First-principles study on the structural and electronic properties of single-layer MoSi2N4


Two-dimensional materials
strain engineering
first-principles calculations
single-layer MoSi2N4

How to Cite

Nguyen CQ, Le TTP, Nguyen CV. First-principles study on the structural and electronic properties of single-layer MoSi2N4. hueuni-jns [Internet]. 2022Dec.31 [cited 2023Sep.28];131(1D):5-11. Available from:


Motivated by the successful exfoliation of a novel two-dimensional MoSi2N4 materials, in this work, we investigate the structural and electronic properties of a novel single-layer MoSi2N4 and the effect of strain engineering by using the first-principles calculations based on the density functional theory. The single-layer MoSi2N4 has a hexagonal structure with a space group of P6m1, which is dynamically stable. The material exhibits a semiconducting characteristic with an indirect band gap of 1.80/2.36 eV calculated by using the PBE/HSE functional. The conduction band minimum at the K point of the material originates from the Mo atom, while its valence band maximum at the G point is contributed by the hybridization between the Mo and N atoms. The electronic properties of the single-layer MoSi2N4 can be modulated with strain engineering, giving rise to a transition from a semiconductor to a metal and tending to a change in the band gap. Our results demonstrate that the single-layer MoSi2N4 is a promising candidate for electronic and optoelectronic applications.


  1. Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, et al. Electronics based on two-dimensional materials. Nature Nanotechnology. 2014;9(10):768-779.
  2. Miró P, Audiffred M, Heine T. An atlas of two-dimensional materials. Chemical Society Reviews. 2014;43(18):6537-6554.
  3. Butler SZ, Hollen SM, Cao L, Cui Y, Gupta JA, Gutiérrez HR, et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano. 2013;7(4):2898-2926.
  4. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666-669.
  5. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva I, et al. Two-dimensional gas of massless dirac fermions in graphene. Nature. 2005;438(7065):197-200.
  6. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, et al. Superior thermal conductivity of single-layer graphene. Nano Letters. 2008;8(3):902-907.
  7. Zhan B, Li C, Yang J, Jenkins G, Huang W, Dong X. Graphene field‐effect transistor and its application for electronic sensing. Small. 2014;10(20):4042-4065.
  8. Xia F, Mueller T, Lin YM, Valdes-Garcia A, Avouris P. Ultrafast graphene photodetector. Nature Nanotechnology. 2009;4(12):839-843.
  9. Manzeli S, Ovchinnikov D, Pasquier D, Yazyev OV, Kis A. 2D transition metal dichalcogenides. Nature Reviews Materials. 2017;2(8):1-15.
  10. Carvalho A, Wang M, Zhu X, Rodin AS, Su H, Neto AHC. Phosphorene: From theory to applications. Nature Reviews Materials. 2016;1(11):1-16.
  11. Kou L, Chen C, Smith SC. Phosphorene: Fabrication, properties, and applications. Journal of Physical Chemistry Letters. 2015;6(14):2794-2805.
  12. Cassabois G, Valvin P, Gil B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nature Photonics. 2016;10(4):262-266.
  13. Zhang K, Feng Y, Wang F, Yang Z, Wang J. Two dimensional hexagonal boron nitride (2D-hBN): Synthesis, properties and applications. Journal of Materials Chemistry C. 2017;5(46):11992-12022.
  14. Zhou H, Wang C, Shaw JC, Cheng R, Chen Y, Huang X, Liu Y, Weiss NO, Lin Z, Huang Y. Large area growth and electrical properties of p-type WSe2 atomic layers. Nano Letters. 2015;15(1):709-713.
  15. Liu H, Neal AT, Zhu Z, Luo Z, Xu X, Tománek D, et al. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano. 2014;8(4):4033-4041.
  16. Jain R, Singh Y, Cho S-Y, Sasikala SP, Koo SH, Narayan R, et al. Ambient stabilization of few layer phosphorene via noncovalent functionalization with surfactants: Systematic 2D NMR characterization in aqueous dispersion. Chemistry of Materials. 2019;31(8):2786-2794.
  17. Hong YL, Liu Z, Wang L, Zhou T, Ma W, Xu C, et al. Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science. 2020;369(6504):670-674.
  18. Yu J, Zhou J, Wan X, Li Q. High intrinsic lattice thermal conductivity in monolayer MoSi2N4. New Journal of Physics. 2021;23(3):033005.
  19. Wu Q, Cao L, Ang YS, Ang LK. Semiconductor-to-metal transition in bilayer MoSi2N4 and WSi2N4 with strain and electric field. Applied Physics Letters. 2021;118(11):113102.
  20. Cui Z, Luo Y, Yu J, Xu Y. Tuning the electronic properties of MoSi2N4 by molecular doping: A first principles investigation. Physica E: Low-dimensional Systems and Nanostructures. 2021;134(114873.
  21. Guo XS, Guo SD. Tuning transport coefficients of monolayer MoSi2N4 with biaxial strain. Chinese Physics B. 2021;30(6):067102.
  22. Cao L, Zhou G, Wang Q, Ang L, Ang YS. Two-dimensional van der waals electrical contact to monolayer MoSi2N4. Applied Physics Letters. 2021;118(1):013106.
  23. Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Physical Review B. 1993;47(1):558.
  24. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B. 1996;54(16):11169.
  25. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters. 1996;77(18):3865.
  26. Heyd J, Scuseria GE, Ernzerhof M. Hybrid functionals based on a screened coulomb potential. Journal of Chemical Physics. 2003;118(18):8207-8215.
  27. Pham KD, Nguyen CQ, Nguyen C, Cuong PV, Hieu NV. Two-dimensional van der waals graphene/transition metal nitride heterostructures as promising high-performance nanodevices. New Journal of Chemistry. 2021;45(12):5509-5516.
  28. Bafekry A, Faraji M, Hoat D, Shahrokhi M, Fadlallah M, Shojaei F, et al. MoSi2N4 single-layer: A novel two-dimensional material with outstanding mechanical, thermal, electronic and optical properties. Journal of Physics D: Applied Physics. 2021;54(15):155303.
  29. Choi SM, Jhi SH, Son YW. Effects of strain on electronic properties of graphene. Physical Review B. 2010;81(8):081407.
  30. Si C, Sun Z, Liu F. Strain engineering of graphene: A review. Nanoscale. 2016;8(6):3207-3217.
  31. Shen T, Penumatcha AV, Appenzeller J. Strain engineering for transition metal dichalcogenides based field effect transistors. ACS Nano. 2016;10(4):4712-4718.
  32. Kansara S, Gupta SK, Sonvane Y. Effect of strain engineering on 2D dichalcogenides transition metal: A DFT study. Computational Materials Science. 2018;141(235-242.
  33. Sa B, Li YL, Qi J, Ahuja R, Sun Z. Strain engineering for phosphorene: The potential application as a photocatalyst. Journal of Physical Chemistry C. 2014;118(46):26560-26568.
  34. Phuc HV, Hieu NN, Ilyasov VV, Phuong L, Nguyen CV. First principles study of the electronic properties and band gap modulation of two-dimensional phosphorene monolayer: Effect of strain engineering. Superlattices and Microstructures. 2018;118(289-297.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2022 Array