Propagation of electromagnetic waves in hyperbolic metamaterials with epsilon near-zero permittivity
PDF (Vietnamese)

Keywords

siêu vật liệu hyperbolic
độ thấm điện môi gần bằng 0
sợi nano kim loại nhúng trong nền điện môi hyperbolic metamaterial
metallic nanowires
embedded
dielectric matrix
near-zero permittivity

How to Cite

1.
Nguyễn PQA, Lê NM. Propagation of electromagnetic waves in hyperbolic metamaterials with epsilon near-zero permittivity. hueuni-jns [Internet]. 2023Mar.31 [cited 2025Jan.21];132(1A):29-3. Available from: https://jos.hueuni.edu.vn/index.php/hujos-ns/article/view/6622

Abstract

In this paper, we investigated hyperbolic metamaterials based on a structure containing metallic nanowires embedded in a dielectric matrix with the utility environment theory method. Hyperbolic metamaterials with near-zero permittivity may exist simultaneously in type I and type II. The propagation of transverse electromagnetic waves in these two types of metamaterial was considered. The diverging incident light beam seems to convert into a well-collimated beam and transfers all its energy in the direction perpendicular to the surface of the hyperbolic metamaterial of type I in the region of special values ​​of the incidence angle from –5 to 5°. In the hyperbolic metamaterial of type II, the light wave entirely transmits through the material layers, while the transmittance remains constant in the range of incident angle values ​​from –40 to 40°. The radius of the metal nanowires and the material thickness also affect the characteristics of electromagnetic wave propagation.

https://doi.org/10.26459/hueunijns.v132i1A.6622
PDF (Vietnamese)

References

  1. Liu Y, Zhang X. Metamaterials: a new frontier of science and technology. Chemical Society Reviews. 2011;40(5):2494-507.
  2. Viktor GV. The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ. Soviet Physics Uspekhi. 1968;10(4):509.
  3. Shalaev VM. Optical negative-index metamaterials. Nature Photonics. 2007;1(1):41-8.
  4. Cai W, Shalaev VM. Optical Metamaterials—Fundamentals and Applications. New York: Springer; 2010.
  5. Capolino F. Metamaterials Handbook 1: Theory and Phenomena of Metamaterials. Boca Raton: CRC Press; 2009.
  6. Simovski CR, Belov PA, Atrashchenko AV, Kivshar YS. Wire Metamaterials: Physics and Applications. 2012;24(31):4229-48.
  7. Zouhdi S, Sihvola A, Vinogradov AP. Metamaterials and Plasmonics: Fundamentals, Modelling, Applications. Dordrecht: Springer; 2009.
  8. Alù A, Silveirinha MG, Engheta N. Transmission-line analysis of 1-near-zero (ENZ) filled narrow channels. Physical Review E. 2008;78(1):016604.
  9. Silveirinha M, Engheta N. Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media. Physical Review B. 2007;75(7):075119.
  10. Koivurova M, Hakala T, Turunen J, Friberg AT, Ornigotti M, Caglayan H. Metamaterials designed for enhanced ENZ properties. New Journal of Physics. 2020;22(9):093054.
  11. Kaipurath RM, Pietrzyk M, Caspani L, Roger T, Clerici M, Rizza C, et al. Optically induced metal-to-dielectric transition in Epsilon-Near-Zero metamaterials. Scientific Reports. 2016;6(1):27700.
  12. Shen N-H, Zhang P, Koschny T, Soukoulis CM. Metamaterial-based lossy anisotropic epsilon-near-zero medium for energy collimation. Physical Review B. 2016;93(24):245118.
  13. Habib M, Briukhanova D, Das N, Yildiz BC, Caglayan H. Controlling the plasmon resonance via epsilon-near-zero multilayer metamaterials. Nanophotonics. 2020;9(11):3637-44.
  14. Islam SS, Faruque MRI, Islam MT. An Object-Independent ENZ Metamaterial-Based Wideband Electromagnetic Cloak. Scientific Reports. 2016;6(1):33624.
  15. Lio GE, Ferraro A, Ritacco T, Aceti DM, De Luca A, Giocondo M, et al. Leveraging on ENZ Metamaterials to Achieve 2D and 3D Hyper-Resolution in Two-Photon Direct Laser Writing. 2021;33(18):2008644.
  16. Hajian H, Ozbay E, Caglayan H. Beaming and enhanced transmission through a subwavelength aperture via epsilon-near-zero media. Scientific Reports. 2017;7(1):4741.
  17. Hajian H, Ozbay E, Caglayan H. Enhanced transmission and beaming via a zero-index photonic crystal. Applied Physics Letters. 2016;109(3).
  18. Feng S, Halterman K. Coherent perfect absorption in epsilon-near-zero metamaterials. Physical Review B. 2012;86(16):165103.
  19. Alù A, Silveirinha MG, Salandrino A, Engheta N. Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern. Physical Review B. 2007;75(15):155410.
  20. Wurtz GA, Pollard R, Hendren W, Wiederrecht GP, Gosztola DJ, Podolskiy VA, et al. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nature Nanotechnology. 2011;6(2):107-11.
  21. Alam MZ, De Leon I, Boyd RW. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science. 2016;352(6287):795-7.
  22. Rashed AR, Yildiz BC, Ayyagari SR, Caglayan H. Hot electron dynamics in ultrafast multilayer epsilon-near-zero metamaterials. Physical Review B. 2020;101(16):165301.
  23. Cai W, Shalaev V. Optical Metamaterials: Fundamentals and Applications. New York: Springer; 2010.
  24. Kidwai O, Zhukovsky SV, Sipe JE. Effective-medium approach to planar multilayer hyperbolic metamaterials: Strengths and limitations. Physical Review A. 2012;85(5):053842.
  25. Shekhar P, Atkinson J, Jacob Z. Hyperbolic metamaterials: fundamentals and applications. Nano Convergence. 2014;1(1):14.
  26. Guo Z, Jiang H, Chen H. Hyperbolic metamaterials: From dispersion manipulation to applications. Journal of Applied Physics. 2020;127(7).
  27. Ferrari L, Wu C, Lepage D, Zhang X, Liu Z. Hyperbolic metamaterials and their applications. Progress in Quantum Electronics. 2015;40:1-40.
  28. Sreekanth KV, ElKabbash M, Alapan Y, Ilker EI, Hinczewski M, Gurkan UA, et al. Hyperbolic metamaterials-based plasmonic biosensor for fluid biopsy with single molecule sensitivity. EPJ Applied Metamaterials. 2017;4:1.
  29. Guo Z, Jiang H, Chen H. Hyperbolic metamaterials: From dispersion manipulation to applications. Journal of Applied Physics. 2020;127(7).
  30. Humeyra C. Hyperbolic metamaterials for utilizing epsilon-near-zero features. Proc SPIE 11795. Metamaterials, Metadevices, and Metasystems; 2021.
  31. Luo J, Xu Y, Chen H, Hou B, Lu W, Lai Y. Oblique total transmissions through epsilon-near-zero metamaterials with hyperbolic dispersions. Europhysics Letters. 2013;101(4):44001.
  32. Ji W, Luo J, Lai Y. Extremely anisotropic epsilon-near-zero media in waveguide metamaterials. Opt Express. 2019;27(14):19463-73.
  33. Bukhanko AF. Particular features of the optical properties of an anisotropic metamaterial with a near-zero dielectric permittivity. Optics and Spectroscopy. 2017;122(4):661-9.
  34. Othman M, Guclu C, Capolino F. Graphene–dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition. Journal of Nanophotonics. 2013;7(1):073089.
  35. Luo J, Lu W, Hang Z, Chen H, Hou B, Lai Y, et al. Arbitrary Control of Electromagnetic Flux in Inhomogeneous Anisotropic Media with Near-Zero Index. Physical Review Letters. 2014;112(7):073903.
  36. Elser J, Wangberg R, Podolskiy VA, Narimanov EE. Nanowire metamaterials with extreme optical anisotropy. Applied Physics Letters. 2006;89(26).
  37. Thongrattanasiri S. Computational Nanooptics in Hyperbolic Metamaterials and Plasmonic Structures. Oregion State University; 2010.
  38. Gadomskii ON, Altunin KK, Rusin AA, Zubkov EG. Enhanced optical transmission of composite nanostructures of thick films with quasi-zero index of refraction. University proceedings Volga region. Physics and mathematics sciences. 2013;25(1). (In Russian)
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2023 Array