Optical Stark effect of exciton in InGaAs/InAlAs oblate spheroidal quantum dots
PDF (Vietnamese)

Keywords

hiệu ứng Stark quang học
chấm lượng tử phỏng cầu dạng dẹt
exciton
InGaAs
InAlAs optical Stark effect
oblate spheroidal quantum dots
exciton

How to Cite

1.
Lê TNB, Đinh Như T. Optical Stark effect of exciton in InGaAs/InAlAs oblate spheroidal quantum dots. hueuni-jns [Internet]. 2022Sep.30 [cited 2024Nov.22];131(1C):103-14. Available from: https://jos.hueuni.edu.vn/index.php/hujos-ns/article/view/6668

Abstract

In this paper, we studied the existence of the exciton optical Stark effect in oblate spheroidal quantum dots by using the renormalized wavefunction theory. A strong pump wave was applied to couple the electron quantization states in the conduction band in a three-level system model. We observed two separate peaks of the interband absorption transitions representing the separation of the electron energy levels due to the optical Stark effect. In addition, the influence of the pump field energy, size, and geometry of the quantum dots on the effect characteristics was also investigated in detail.

https://doi.org/10.26459/hueunijns.v131i1C.6668
PDF (Vietnamese)

References

  1. Kumar KM, Peter AJ, Lee CW. Optical absorption and refraction index change of a confined exciton in a spherical quantum dot nanostructure. The European Physical Journal B. 2011;84:431-438.
  2. Gambhir M, Prasad V. Study of non-linear optical properties of center and edge δ-doped multiple quantum wells. Revista Mexicana de Física. 2018;64:439-446.
  3. Sarkisyan HA, Hayrapetyan DB, Petrosyan LS, Kazaryan EM, Sofronov AN, Balagula RM, et al. Realization of the Kohn’s Theorem in Ge/Si Quantum Dots with Hole Gas: Theory and Experiment. Nanomaterials. 2019;9:1-24.
  4. Özbakir R. Linear and Nonlinear Intersubband Optical Absorptions In Multiple Quantum Wells Under The External Fields. Cumhuriyet Science Journal. 2019;40:640-649.
  5. Aghoutane N, E-Yadri M, Aouami AE, Feddi EM, Dujardin F, Haouari ME. Optical Absorption of Excitons in Strained Quasi 2D GaN Quantum Dot. Physica Status Solidi (B). 2019;256:1800361(1-6).
  6. Liu J, Nie Y, Xue W, Wu L, Jin H, Jin G, Zhai Z, and Fu C. Size effects on structural and optical properties of tin oxide quantum dots with enhanced quantum confinement. Journal of Materials Research and Technology. 2020;9:8020-8028.
  7. Solaimani M, and Kenari AR. A nonparabolic conduction band study of circular quantum dot optical properties: modeling of surface roughness by using Koch snowflakes. Journal of Nanoparticle Research. 2020;22:242(1-10).
  8. Harutyunyan VA, Kazaryan EM, Kostanyan AA, Sarkisyan HA. Interband transitions in cylindrical layer quantum dot: Influence of magnetic and electric fields. Physica E. 2007;36:114-118.
  9. Liu C-H, Xu B-R. Theoretical study of the optical absorption and refraction index change in a cylindrical quantum dot. Physics Letters A. 2008; 372:888-892.
  10. He L, Xie W. Effects of an electric field on the confined hydrogen impurity states in a spherical parabolic quantum dot. Superlattices and Microstructures. 2010;47:266-273.
  11. Hayrapetyan DB, Kazaryan EM, Kotanjyan TV, Tevosyan HKh. Exciton states and interband absorption of cylindrical quantum dot with Morse confining potential. Superlattices and Microstructures. 2015;78:40-49.
  12. Liang L, Xie W. Influence of the shape of quantum dots on their optical absorptions. Physica B. 2015; 462:15-17.
  13. Cantele G, Ninno D, Iadonisi G. Confined states in ellipsoidal quantum dots. Journal of Physics: Condensed Matter. 2000;12:9019-9036.
  14. Cantele G, Piacente G, Ninno D, Iadonisi G. Optical anisotropy of ellipsoidal quantum dots. Physical Review B. 2002;66:113308(1-4).
  15. Boichuk VI, Hol’skyi VB, Kubay RYu, Lukin RI. The electron energy spectrum in an ellipsoidal quantum dot with regard for finite band gap at the interface. Ukrainian Journal of Physics. 2008;53:574-578.
  16. Combescot M, and Combescot R. Optical Stark effect of the exciton: Biexcitonic origin of the shift. Physical Review B. 1989;40:3788-3801.
  17. Gadzhiyev IM, Buyalo MS, Gubenko AE, Egorov AY, Usikova AA, Il’inskaya ND, et al. Switching between the Mode-Locking and Q-Switching Modes in Two-Section QW Lasers upon a Change in the Absorber Properties due to the Stark Effect. Semiconductor. 2016;50:828-831.
  18. Rong Y, Huo Y, Fei ET, Fiorentino M, Tan MRT, Ochalski T, et al. High Speed Optical Modulation In Ge Quantum Wells Using Quantum Confined Stark Effect. Frontiers of Optoelectronics. 2012;5:82-89.
  19. Quang NH. The optical Stark effect of the exciton due to dynamical coupling between quantized states of the electron and hole in quantum wells. International Journal of Modern Physics B. 1993; 7:3405-3413.
  20. Z-Raczyńska S, Czajkowski G, Ziemkiewicz D. Quantum confined stark effect in wide parabolic quantum wells: real density matrix approach. The European Physical Journal B. 2015;88:338(1-8).
  21. Sheng W, Yun K, Chunjie H. Transverse Stark effect in the optical absorption in a square semiconducting quantum wire. Journal of Semiconductors. 2013; 34:102001(1-7).
  22. Rustagi A, Kemper AF. Coherent excitonic quantum beats in time-resolved photoemission measurements. Physical Review B. 2019; 99:125303(1-7).
  23. Sangalli D, Perfetto E, Stefanucci G, Marini A. An ab-initio approach to describe coherent and non-coherent exciton dynamics. The European Physical Journal B. 2018;91:171(1-12).
  24. Song D, Wang F, Dukovic G, Zheng M, Semke ED, Brus LE, et al. Measurement of the optical Stark effect in semiconducting carbon nanotubes. Applied Physics A. 2009;96:283-287.
  25. Efumi S, Uchibori Y, Ishihara J, Miyajima K. Observation of optical Stark effect between 1s - 2p exciton levels in CuCl single crystal. Journal of Physics: Conference Series. 2019;1220:012022(1-4).
  26. Ahn D. Enhancement of the Stark Effect in Coupled Quantum Wells for Optical Switching Devices. IEEE Journal of Quantum Electronics. 1989;25:2260-2265.
  27. Liu JT, Su FH, Wang H, Deng XH. The influence of the optical Stark effect on chiral tunneling in graphene. Europhysics Letters. 2011;95:24003p1-24003p5.
  28. Iadonisi G, Cantele G, Ramaglia VM, Ninno D. Electronic and optical properties of semiconductor nanostructures. Physica Status Solidi (b). 2003; 237:320-340.
  29. https://en.wikipedia.org/wiki/Spheroid. Ngày truy cập: 22 tháng 7 năm 2021.
  30. Bányai L, Koch SW. Semiconductor Quantum Dots (World Scientific, Singapore) 1st ed. 1993. Chap. 1, a) p. 5; b) pp. 11-15; c) p. 117.
  31. Jorio A, Saito R, Dresselhaus G, Dresselhaus MS. Raman Spectroscopy in Graphene Related Systems (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim). 2011; Part 1, Chap. 5, Sec. 5.4.1, 2011.
  32. V. Balakrishnan. All about the dirac delta function (?). Resonance. 2003;8:48-58.
  33. Asai H, Kawamura Y. Intersubband absorption in In0.53Ga0.47As/In0.52Al0.48As multiple quantum wells. Physical Review B. 1991;43:4748-4759.
  34. Cao S, Zhao Y, Feng S, Zuo Y, Zhang L, Cheng B, et al. Theoretical Analysis of InGaAs/InAlAs Single-Photon Avalanche Photodiodes. Nanoscale Research Letters. 2019;14:1-8.
  35. Thao DN, Bao LTN, Phuoc DD, Quang NH. A theoretical study of the optical Stark effect in InGaAs/InAlAs quantum dots. Semiconductor Science and Technology. 2017;32:025014-1.
  36. Bao LTN, Phuoc DD, Hien LTD, Thao DN. On the optical Stark effect of excitons in InGaAs prolate ellipsoidal quantum dots. Journal of Nanomaterials. 2021;5586622:1-12.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2022 Array