Nonlinear properties of circular solid-core photonic crystal fiber with air-hole diameter difference and spacing in the cladding
PDF

Keywords

Photonic crystal fibers (PCFs)
circular lattice
supercontinuum generation (SCG)
near-zero ultra-flattened chromatic dispersion
low attenuation Các sợi tinh thể quang tử (PCFs)
mạng tròn
phát siêu liên tục (SCG)
tán sắc màu siêu phẳng gần bằng không
suy hao thấp

How to Cite

1.
Le TBT, Dang VT, Chu VL, Nguyen THT, Hoang TD, Nguyen TT. Nonlinear properties of circular solid-core photonic crystal fiber with air-hole diameter difference and spacing in the cladding. hueuni-jns [Internet]. 2022Dec.31 [cited 2024Nov.30];131(1D):13-21. Available from: https://jos.hueuni.edu.vn/index.php/hujos-ns/article/view/6685

Abstract

We emphasize the ability to control the nonlinear properties of silica-based circular solid-core photonic crystal fibers (PCFs) with a new design. In this fiber, the diameter of the air hole in the rings is different, and the lattice constant is ununiform in the cladding. The simulation results show that a near-zero ultra-flattened chromatic dispersion over a wide wavelength range and low attenuation in these PCFs is achieved. Two structures with the lattice constant, Ʌ, of 0.7 and 0.9 µm and filling factor, d1/Ʌ, of 0.45 in the first ring were selected and investigated in detail. These structures are capable of generating broad-spectrum supercontinuum.

https://doi.org/10.26459/hueunijns.v131i1D.6685
PDF

References

  1. Knight JC, Birks TA, Russell PSJ, Atkin DM. All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters. 1996;21(19):1547-2.
  2. Larsen T, Bjarklev A, Hermann D, Broeng J. Optical devices based on liquid crystal photonic bandgap fibers. Optics Express. 2003;11(20):2589.
  3. Yu C, Liou J. Selectively liquid-filled photonic crystal fibers for optical devices. Optics Express. 2009;17(11):8729.
  4. Du F, Lu YQ, Wu ST. Electrically tunable liquid-crystal photonic crystal fiber. Applied Physics Letters. 2004;85(12):2181.
  5. Noordegraaf D, Scolari L, Lægsgaard J, Rindorf L, Alkeskjold TT. Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers. Optics Express. 2007; 15(13):7901.
  6. Gundu KM, Kolesik M, Moloney JV, Lee KS. Ultra-flattened-dispersion selectively liquid-filled photonic crystal fibers. Optics Express. 2006; 14(15): 6870.
  7. Rasmussen PD, Lægsgaard J, Bang O. Chromatic dispersion of liquid-crystal infiltrated capillary tubes and photonic crystal fibers. Journal of the Optical society of America B. 2006;23(10):2241.
  8. Park J, Kang D, Paulson B, Nazari T, Oh K. Liquid core photonic crystal fiber with low-refractive-index liquids for optofluidic applications. Optic Express. 2014;22(14):17320.
  9. Lanh CV, Thuy HV, Long CV, Borzycki K, Khoa DX, Vu TQ, et al. Supercontinuum generation in photonic crystal fibers infiltrated with nitrobenzene. Laser Physics. 2020;30(3):035105.
  10. Lanh CV, Thuy HV, Long CV, Borzycki K, Khoa DX, Vu TQ, et al. Optimization of optical properties of photonic crystal fibers infiltrated with chloroform for supercontinuum generation. Laser Physics. 2019;29(7): 075107.
  11. Khoa DX, Lanh CV, Quang HD, Luu VX, Trippenbach M, Buczynski R. Dispersion characteristics of a suspended-core optical fiber infiltrated with water. Applied Optics. 2017;56(4): 1012-1019.
  12. Khoa DX, Lanh CV, Long CV, Quang HD, Luu VM, Trippenbach M, et al. Influence of temperature on dispersion properties of photonic crystal fibers infiltrated with water. Optical and Quantum Electronics. 2017;49(2).
  13. Quy HQ, Lanh CV. Spectrum Broadening of Supercontinuum Generation by fill Styrene in core of Photonic Crystal Fibers. Indian Journal of Pure & Applied Physics. 2021;59:522-527.
  14. Lanh CV, Anuszkiewicz A, Ramaniuk A, Kasztelanic R, Khoa DX, Trippenbach M, et al. Supercontinuum generation in photonic crystal fibers with core filled with toluene. Journal of Optics. 2017;19(12):125604.
  15. Vu NQ, Linh DT, Vu TQ, Khoa DX, Ha LTK, Thu ND, et al. Comparison of characteristics quantities of photonic crystal fiber with hollow core infiltrated Nitrobenzene and Toluene at 1064nm for supercontinuum generation. Journal of Military Science and Technology. 2019; 61:183-188.
  16. Lanh CV, Vu NQ, Linh NTM, Vu TQ, Trang CTG, Huyen DT, et al. Dispersions of solid-core Silica PCFs infiltrated with Water and Ethanol fo supercontinuum generation. In: Hung ND, editor. Advances in Applied and Engineering Physics. Proceedings of CAEP(VI); 2019 October 22-26; Thai Nguyen; Hanoi: Publishing House for Science and Technology; 2020. p. 288-291.
  17. Linh DT, Huyen PN, Vu NQ, Huong NL, Vu TQ, Khoa DX, et al. Optimization of characteristic parameters of photonic crystal fiber with core infiltrated by Carbon disulfide liquid for supercontinuum generation. In: Hung ND, editor. Advances in Applied and Engineering Physics. Proceedings of CAEP(V); 2017 October 2-4; Da Lat; Hanoi: Publishing House for Science and Technology; 2018. p. 206-211.
  18. Medjouri A, Simohamed AM, Ziane O, Boudrioua A. Analysis of a new circular photonic crystal fiber with large mode area. Optik- International Journal for Light and Electron Optics.2015;126(24):5718-5724.
  19. Pandey SK, Prajapati YK, Maur JB. Design of simple circular photonic crystal fiber having high negative dispersion and ultra-low confinement loss. Results in Optics. 2020;1:100024.
  20. Sen S, Abdullah-Al-Shafi Md, Kabir MA. Hexagonal photonic crystal Fiber (H-PCF) based optical sensor with high relative sensitivity and low confinement loss for terahertz (THz) regime. Sensing and Bio-Sensing Research. 2020;30:100377
  21. Wang Y, Li S, Wu J, Yu P, Li Z. Design of an ultrabroadband and compact filter based on square-lattice photonic crystal fiber with two large gold-coated air holes. Photonics and Nanostructures - Fundamentals and Applications. 2020;41:100816.
  22. Tran LTB, Thuy NT, Ngoc VTM, Trung LC, Minh LV, Long VC, et al. Analysis of dispersion characteristics of solid-core PCFs with different types of lattice in the claddings, infiltrated with ethanol. Photonics Letters of Poland. 2020;12(4): 106-108.
  23. ANSYS Inc. Lumerical Mode Solution software. Version 2021. United States: ANSYS; https://doi.org/https://www.lumerical.com/products/mode
  24. Saitoh K, Koshiba M, Hasegawa T, Sasaoka E. Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion. Optics Express. 2003;11:843-852K.
  25. Moutzouris K, Papamichael M, Betsis SC, Stavrakas I, Hloupis G, Triantis D. Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared. Applied Physics B. 2014;116(3):617.
  26. Dhara P, & Singh V K. Investigation of rectangular solid-core photonic crystal fiber as temperature sensor. Microsystem Technologies. 2021;27:127-132
  27. Buczyński R. Photonic crystal fibers. Acta Physica Polonica A. 2004;106(2):141-168.
  28. Pniewski J, Stefaniuk T, Hieu LV, Long VC, Lanh CV, Kasztelanic R, et al. Dispersion engineering in nonlinear soft glass photonic crystal fibers infiltrated with liquids. Applied Optics. 2016; 55(19):5033-5040.
  29. Knight JC, Birks TA, Cregan RF, Russell PSJ. Large Mode area photonic crystal fiber. Optics Photonics News. 1998;9(12):34-35.
  30. Napierala M, Nasilowski T, Pawlik EB, Mergo P, Berghmans F, Thienpont H. Larger-mode-area photonic crystal fiber with double lattice constant structure and low bending loss. Optics Express. 2011;19(23):22628.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2022 Array