QSPR-based calculation model for stability constants of new metal-thiosemicarbazone complexes with hybrid techniques
PDF

Keywords

ANN
MLR
QSPR
stability constants logb12
SVR
thiosemicarbazone

How to Cite

1.
Nguyen HM, Quang NM. QSPR-based calculation model for stability constants of new metal-thiosemicarbazone complexes with hybrid techniques. hueuni-jns [Internet]. 2024Dec.31 [cited 2025Mar.18];133(1D):5-18. Available from: https://jos.hueuni.edu.vn/index.php/hujos-ns/article/view/7306

Abstract

In the present study, we calculated the logb12 stability constant of twenty new ML2 complexes between thiosemicarbazone and metal ions based on the modelling techniques of the quantitative structure and property relationship (QSPR). The QSPR models were developed by combining the genetic algorithm (GA) with multivariate linear regression techniques (QSPRGA-MLR), support vector regression (QSPRGA-SVR), and artificial neural network (QSPRGA-ANN). The descriptive parameters were calculated from semi-empirical quantum computation with the new versions PM7 and PM7/sparkle. The resulting QSPRGA-MLR models had three variables, and the QSPRGA-SVR and QSPRGA-ANN models were developed from the variables of the QSPRGA-MLR model. The results show that the best QSPRGA-SVR model had the following optimal parameters: C = 10.0; g = 0.333; e = 0.10 with 51 support vectors, and a QSPRGA-ANN model with the network architecture I(3)-HL(10)-O(1) was successfully developed. Furthermore, the quality of QSPR models conformed to statistical values ​​according to OECD principles and Tropsha’s criteria.

https://doi.org/10.26459/hueunijns.v133i1D.7306
PDF

References

  1. Roy K, Kar S, Das RN. A Primer on QSAR/QSPR Modeling. Fundamental Concepts. New York (USA). Springer; 2015.
  2. Jiang J, Duan W, Wei Q, Zhao X, Ni L, Pan Y, Shu CM. Development of quantitative structure-property relationship (QSPR) models for predicting the thermal hazard of ionic liquids: A review of methods and models. J Mol Liq. 2020;301:112471.
  3. Abramenko N, Kustov L, Metelytsia L, Kovalishyn V, Tetko I, Peijnenburg W. A review of recent advances towards the development of QSAR models for toxicity assessment of ionic liquids. J Hazar Mater. 2020;384.
  4. Kumar S, Dhar DN, Saxena PN. Applications of metal complexes of Schiff bases-A review. J Sci Ind Res. 2009;68.
  5. Khan T, Ahmad R, Joshi S, Khan AR. Anticancer potential of metal thiosemicarbazone complexes: a review. Chem Sin. 2015;6.
  6. Patel NC, Patel BA. Spectrophotometric Method for determination of Copper (II) using p-Chlorobenzaldehyde -4-(2’-carboxy-5-sulphophenyl)-3-thiosemicarbazone [pCBCST]. Res J Chem Sci. 2014;4(2):1-6.
  7. Stewart JJP. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J Mol Model. 2013;19:1-32.
  8. OECD, Guidance Document on the Validation of (Quantitative) Structure-Activity Relationships Models, Organisation for Economic Co‐operation and Development (France); 2007.
  9. Golbraikh A, Tropsha A. Beware of q2!. J Mol Graph Model. 2002;20(4):269-76.
  10. MacQueen JB. Some methods for classification and analysis of multivariate observations. Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability. University of California Press (USA). 1967;281-297.
  11. Forgy EW. Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics. 1965;21:768-769.
  12. Friedman HP, Rubin J. On some invariant criteria for grouping data. Journal of the American Statistical Association. 1967;62:1159-1178.
  13. Reddy KH, Prasad NBL, Reddy TS. Analytical properties of 1-phenyl-1,2-propanedione-2-oxime thiosemicarbazone: simultaneous spectrophotometric determination of copper(II) and nickel(II) in edible oils and seeds. Talanta. 2003; 59:425-433.
  14. Reddy KH, Prasad NBL. Spectrophotometric determination of copper (II) in edible oils and seed using novel oxime-thiosemicarbazones. India J Chem. 2004;43A:111-114.
  15. Reddy SAN, Reddy KJ, Duk LK, Reddy AV. Evaluation of 2,6-diacetylpyridinebis-4-phenyl-3-thiosemicarbazone as complexing reagent for zinc in food and environmental samples. J Saudi Chem Soc. 2012;16:1-9.
  16. El-Karim ATA, El-Sherif AA. Potentiometric, equilibrium studies and thermodynamics of novel thiosemicarbazones and their bivalent transition metal(II) complexes. J Mol Liq. 2016;219:914-922.
  17. Atalay T, Ozkan E. Thermodynamic studies of some complexes of 4’-morpholinoacetophenone thiosemicarbazone. Thermochimica Acta. 1994; 237:369-374.
  18. Garg BS, Jain VK. Determination of thermodynamic parameters and stability constants of complexes of biologically active o-vanillinthiosemicarbazone with bivalent metal ions. Thermochimica Acta. 1989;146:375-379.
  19. Sarkar K, Garg BS. Determination of thermodynamic parameters and stability constants of the complexes of p-MITSC with transition metal ions. Thermochimica Acta. 1987;113:7-14.
  20. Guha R, Willighagen E. A survey of quantitative descriptions of molecular structure. Curr Top Med Chem. 2012;12:1946-1956.
  21. QSARIS 1.1. Statistical Solutions Ltd (USA); 2001.
  22. Holland JH. Genetic algorithms. Sci Am. 1992; 267:44-50.
  23. Steppan DD, Werner J, Yeater PR. Essential Regression and Experimental Design for Chemists and Engineers; 1998.
  24. Alex JS, Bernhard S. A tutorial on support vector regression. Statistics and Computing. 2004;14:199-222.
  25. Cortes C, Vapnik VN. Support-vector networks. Machine Learning. 1995;20:251-261.
  26. Gasteiger J, Zupan J. Neural networks in chemistry. Chiw Inr Ed EngI. 1993;32:503-521.
  27. Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986;323(6088):533-536.
  28. Matlab R2016a 9.0.0.341360, USA. MathWorks; 2016.
  29. Quang NM, Mau TX, Nhung TTA, An TNM, Tat PV. Novel QSPR modeling of stability constants of metal-thiosemicarbazone complexes by hybrid multivariate technique: GA-MLR, GA-SVR and GA-ANN. J Mol Struct. 2019;1195:95-109.
  30. Waikato Environment for Knowledge Analysis-Version 3.9.3. The University of Waikato Hamilton. New Zealand; 1999-2018.
  31. Reddy DN, Reddy KV, Tegegne BM, Reddy VK. Development of a Highly Sensitive Extractive Spectrophotometric Method for the Determination of Nickel(II) from Environmental Matrices Using 2-Acetylpyridine-4-methyl-3-thiosemicarbazone. American J Anal Chem. 2012;3:719-726.
  32. Reddy SL, Sekhar KBC. Analytical applications of 3-acetylpyridine thiosemicarbazone (3-APT): Simple and sensitive spectrophotometric determination of nickel (II) in soil and alloy samples. Int J Bas App Chem Sci. 2013;3(4):62-68.
  33. Atalay T, Akgemci EG. Thermodynamic Studies of Some Complexes of 2-benzoylpyridine 4-phenyl-3-thiosemicarbazone. India J Chem. 1998;22:123-127.
  34. Atalay T, Ozkan E. Thermodynamic stabilities: thermodynamic parameters of some complexes of 4’-morpholinoacetophenone 4-phenyl-3-thiosemicarbazone. Thermochimica Acta. 1994;246:193-197.
  35. Gaál A, Orgován G, Polgári Z, Réti A, Mihucz VG, Bősze S, Szoboszlai N, Streli C. Complex forming competition and in-vitro toxicity studies on the applicability of di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone (Dp44mT) as a metal chelator. J Inorg Biochem. 2014;130:52-58.
  36. Bernhardt PV, Sharpe PC, Islam M, Lovejoy DB, Kalinowski DS, Richardson DR. Iron chelators of the dipyridylketone thiosemicarbazone class: Precomplexation and transmetalation effects on anticancer activity. J Med Chem. 2009;52(2):407-415.
  37. Sahadev S, Sharma RK, Sindhwani SK. Potentiometric studies on the complexation equilibria between Some trivalent lanthanide metal ions and biologically active 2-Hydroxy-1-naphthaldehyde thiosemicarbazone (HNATS). Monatshefte fur Chemie. 1992;123:883-889.
  38. Sahadev S, Sharma RK, Sindhwani SK, Thermal studies on the chelation behaviour of biologically active 2-hydroxy-1-naphthaldehyde thiosemicarbazone (HNATS) towards bivalent metal ions: a potentiometric study. Thermochimica Acta. 1992;202:291-299.
  39. Sawhney SS, Sati RM. pH-metric studies on Cd(II)-, Pb(II)-, AI(III)-, Cr(III)- AND Fe(III)-p-nitrobenzaldehyde thiosemicarbazone systems. Thermochimica Acta. 1983;66:351-355.
  40. Al-Busaidi, Haque, Al Rasbi, Khan M. Phenothiazine-based derivatives for optoelectronic applications: A review. Synthetic Metals. 2019;257:116-189.
  41. Huang L, Feng ZL, Wang YT, Lin LG. Anticancer carbazole Alkaloids and coumarins from Clausena plants: A review. Chin J Nat Med. 2017;15(12):881- 888.
  42. Quang NM. Design, screening and synthesis of thiosemicarbazone derivatives and metal-thiosemicarbazone complexes using quantum chemistry calculation and QSPR modeling methods. Theoretical chemistry and physical chemistry, Hue City; 2020.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2024 Array