Abstract
In the present study, the carbon dots (CD) were extracted from rice straw (RS) and denoted as RSCD. The obtained material was examined by using techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), and nitrogen adsorption/desorption isotherms. The RSCD material was employed as an electrode modifier to improve the effectiveness of an electrochemical sensor for determining clenbuterol (CLB). RSCD showed fabulous oxidation towards clenbuterol. The modest detection limit could confirm an LOD value of 0.094 µM within a linear range between 0.1 and 1.8 µM under suitable conditions and the proposed technique –– the differential pulse voltammetry (DPV). The developed sensor exhibited several benefits: simplicity, low cost, effortless generation, fabulous selectivity, and good reproducibility.
References
- Wang W, Zhang Y, Wang J, Shi X, Ye J. Determination of β-agonists in pig feed, pig urine and pig liver using capillary electrophoresis with electrochemical detection. Meat Sci. 2010;85(2):302-5.
- Vela J, Yanes EG, Stalcup AM. Quantitative determination of clenbuterol, salbutamol and tulobuterol enantiomers by capillary electrophoresis. Fresenius J Anal Chem. 2001;369:212-9.
- Brambilla G, Cenci T, Franconi F, Galarini R, Macrı A, Rondoni F, et al. Clinical and pharmacological profile in a clenbuterol epidemic poisoning of contaminated beef meat in Italy. Toxicol Lett. 2000;114(1–3):47-53.
- Centner TJ, Alvey JC, Stelzleni AM. Beta agonists in livestock feed: Status, health concerns, and international trade. J Anim Sci. 2014;92(9):4234-40.
- He L, Su Y, Zeng Z, Liu Y, Huang X. Determination of ractopamine and clenbuterol in feeds by gas chromatography–mass spectrometry. Anim Feed Sci Technol. 2007;132(3–4):316-23.
- Thevis M, Schebalkin T, Thomas A, Schänzer W. Quantification of clenbuterol in human plasma and urine by liquid chromatography-tandem mass spectrometry. Chromatographia. 2005;62:435-9.
- Aresta A, Calvano CD, Palmisano F, Zambonin CG. Determination of clenbuterol in human urine and serum by solid-phase microextraction coupled to liquid chromatography. J Pharm Biomed Anal. 2008;47(3):641-5.
- Sirichai S, Khanatharana P. Rapid analysis of clenbuterol, salbutamol, procaterol, and fenoterol in pharmaceuticals and human urine by capillary electrophoresis. Talanta. 2008;76(5):1194-8.
- Degand G, Bernes-Duyckaerts A, Delahaut P, Maghuin-Rogister G. Determination of β-agonists in urine by an enzyme immunoassay based on the use of an anti-salbutamol antiserum. Anal Chim Acta. 1993;275(1-2):241-7.
- 10. Liu L, Pan H, Du M, Xie W, Wang J. Glassy carbon electrode modified with Nafion–Au colloids for clenbuterol electroanalysis. Electrochim Acta. 2010;55(24):724-05.
- Bo B, Zhu X, Miao P, Pei D, Jiang B, Lou Y, et al. An electrochemical biosensor for clenbuterol detection and pharmacokinetics investigation. Talanta. 2013;113:36-40.
- Andrea P, Stanislav M. A solid binding matrix/molecularly imprinted polymer-based sensor system for the determination of clenbuterol in bovine liver using differential-pulse voltammetry. Sensors Actuators B Chem. 2001;76(1-3):286-94.
- Moane S, Rodriguez JRB, Ordieres AJM, Blanco PT, Smyth MR. Electrochemical behaviour of clenbuterol at nation-modified carbon-paste electrodes. J Pharm Biomed Anal. 1995;14(1-2):57-63.
- Lin X, Ni Y, Kokot S. A novel electrochemical sensor for the analysis of β-agonists: The poly(acid chrome blue K)/graphene oxide-nafion/glassy carbon electrode. J Hazard Mater. 2013;260:508-17.
- Fan G, Huang J, Fan X, Xie S, Zheng Z, Cheng Q, et al. Enhanced oxidation and detection of toxic clenbuterol on the surface of acetylene black nanoparticle-modified electrode. J Mol Liq. 2012;169:102-5.
- Bonet-San-Emeterio M, Algarra M, Petković M, Del Valle M. Modification of electrodes with N-and S-doped carbon dots. Evaluation of the electrochemical response. Talanta. 2020;212:120806.
- Ding X, Niu Y, Zhang G, Xu Y, Li J. Electrochemistry in carbon‐based quantum dots. Chem Asian J. 2020;15(8):1214-24.
- Anwar S, Ding H, Xu M, Hu X, Li Z, Wang J, et al. Recent advances in synthesis, optical properties, and biomedical applications of carbon dots. ACS Appl Bio Mater. 2019;2(6):2317-38.
- Tejwan N, Saha SK, Das J. Multifaceted applications of green carbon dots synthesized from renewable sources. Adv Colloid Interface Sci. 2020;275:102046.
- Hou T, Zhao J, Lei Z, Shimizu K, Zhang Z. Synergistic effects of rice straw and rice bran on enhanced methane production and process stability of anaerobic digestion of food waste. Bioresour Technol. 2020;314:123775.
- Aquino D, Del Barrio A, Trach NX, Hai NT, Khang DN, Toan NT, et al. Rice straw-based fodder for ruminants. Sustain rice straw Manag. 2020;111-29.
- Laskar AH, Maurya AS, Singh V, Gurjar BR, Liang MC. A new perspective of probing the level of pollution in the megacity Delhi affected by crop residue burning using the triple oxygen isotope technique in atmospheric CO2. Environ Pollut. 2020;263:114542.
- Seo I, Lee K, Bae MS, Park M, Maskey S, Seo A, et al. Comparison of physical and chemical characteristics and oxidative potential of fine particles emitted from rice straw and pine stem burning. Environ Pollut. 2020;267:115599.
- Jiang M, Huo Y, Huang K, Li M. Way forward for straw burning pollution research: a bibliometric analysis during 1972–2016. Environ Sci Pollut Res. 2019; 26:13948-62.
- Wang F, Kreiter M, He B, Pang S, Liu C yan. Synthesis of direct white-light emitting carbogenic quantum dots. Chem Commun. 2010;46(19):3309-11.
- Li JY, Liu Y, Shu QW, Liang JM, Zhang F, Chen XP, et al. One-pot hydrothermal synthesis of carbon dots with efficient up-and down-converted photoluminescence for the sensitive detection of morin in a dual-readout assay. Langmuir. 2017;33(4):1043-50.
- Lin H, Ding L, Zhang B, Huang J. Detection of nitrite based on fluorescent carbon dots by the hydrothermal method with folic acid. R Soc open Sci. 2018;5(5):172149.
- Kumar A, Chowdhuri AR, Laha D, Mahto TK, Karmakar P, Sahu SK. Green synthesis of carbon dots from Ocimum sanctum for effective fluorescent sensing of Pb2+ ions and live cell imaging. Sensors Actuators B Chem. 2017;242:679-86.
- Karuwan C, Mantim T, Chaisuwan P, Wilairat P, Grudpan K, Jittangprasert P, et al. Pulsed amperometry for anti-fouling of boron-doped diamond in electroanalysis of β-agonists: application to flow injection for pharmaceutical analysis. Sensors. 2006;6(12):1837-50.
- Zhai H, Liu Z, Chen Z, Liang Z, Su Z, Wang S. A sensitive electrochemical sensor with sulfonated graphene sheets/oxygen-functionalized multi-walled carbon nanotubes modified electrode for the detection of clenbuterol. Sensors Actuators B Chem. 2015;210:483-90.
- Lin X, Ni Y, Li S, Kokot S. A novel method for simultaneous analysis of three β 2-agonists in foods with the use of a gold-nanoparticle modified glassy carbon electrode and chemometrics. Analyst. 2012;137(9):2086-94.
- Lomae A, Nantaphol S, Kondo T, Chailapakul O, Siangproh W, Panchompoo J. Simultaneous determination of β-agonists by UHPLC coupled with electrochemical detection based on palladium nanoparticles modified BDD electrode. J Electroanal Chem. 2019;840:439-48.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2024 Array