Optimization of culture conditions and study on naphthalene and dibenzofuran degradation abilities of Paenibacillus naphthalenovorans 4B1
PDF (Vietnamese)

Keywords

naphthalene
dibenzofuran
degradation
Paenibacillus naphthalene
dibenzofuran
phân hủy
Paenibacillus

How to Cite

1.
Hà Thanh LT, Thuỷ NTT, Anh LTV, Giang NTK, Hương HDT. Optimization of culture conditions and study on naphthalene and dibenzofuran degradation abilities of Paenibacillus naphthalenovorans 4B1. hueuni-jns [Internet]. 2024Mar.29 [cited 2024Apr.29];133(1A):31-42. Available from: https://jos.hueuni.edu.vn/index.php/hujos-ns/article/view/7391

Abstract

The pollution of polycyclic aromatic hydrocarbon compounds caused by herbicide residues contaminated with dioxin from the war and other wastes from industrial activities has left severe consequences to human health and the environment. Bioremediation using microorganisms capable of decomposing pollutant compounds exhibits more advantages than physicochemical treatment methods as it is highly efficient, economically feasible, sustainable, and eco-friendly. In this study, Paenibacillus naphthalenovorans strain 4B1, isolated from dioxin-contaminated soil in Vietnam, was optimized the culture conditions and evaluated its abilities to degrade dibenzofuran and naphthalene. The results revealed that strain 4B1 showed the best growth on mineral salts medium supplemented with dibenzofuran 1250 mg/L or naphthalene 750 mg/L, pH 7.0, incubated at 45°C and 180 rpm with a cell density of 9,42 × 107 và 5,6 × 107 CFU/mL, respectively. Gas chromatography analysis of the substrate concentrations indicated that strain 4B1 could degrade 79.76% of 1250 mg/L dibenzofuran and 83.03% of 750 mg/L naphthalene after 72 hours of incubation at optimal conditions. These results make Paenibacillus naphthalenovorans 4B1 a potential candidate for application in bioremediation of environments contaminated with polycyclic aromatic hydrocarbon compounds.

https://doi.org/10.26459/hueunijns.v133i1A.7391
PDF (Vietnamese)

References

  1. Peng RH, Xiong AS, Xue Y, Fu XY, Gao F, Zhao W, et al. Microbial biodegradation of polyacromatic hydrocarbons. FEMS Microbiol Reviews. 2008;32:927-955.
  2. Stellman JM, Stellman SD, Christian R, Weber T, Tomasallo C. The extent and patterns of usage of Agent Orange and other herbicides in Vietnam. Nature. 2003;422:681-687.
  3. US Environmental Protection Agency. Analyses of laboratory and field studies of reproductive toxicity in birds exposed to dioxin-like compounds for use in ecological risk assessment. Cincinnati: USEPA Office of Research and Development; 2003.
  4. US Environmental Protection Agency. Health effects support document for Naphthalene. Washington DC: USEPA Office of Water, Health and Ecological Criteria Division; 2003.
  5. Hiraishi A. Biodiversity of dioxin-degrading microorganisms and potential utilization in bioremediation. Microbes and Environments. 2003; 18(3):105-125.
  6. Fortnagel P, Harms H, Wittich R-M, Krohn S, Meyer H, Sinnwell V, et al. Metabolism of dibenzofuran by Pseudomonas sp. strain HH68 and the mixed culture HH27. Applied and Environmental Microbiology. 1990;56(4): 1148-1156.
  7. Li Q, Wang X, Yin G, Gai Z, Tang H, Ma C, et al. New metabolites in dibenzofuran cometabolic degradation by a biphenyl-cultivated Pseudomonas putida strain B6-2. Environmental Science and Technology. 2009;43(22):8635-8642.
  8. Sinh DĐH, Thi TVN, Thanh LTH, Lan PTN, Loc NH, Huy NĐ. Phân lập một số chủng vi khuẩn phân hủy dibenzofuran từ đất nhiễm dioxin ở A Lưới. Tạp chí Khoa học Đại học Huế: Khoa học tự nhiên. 2018; 127(1C):141-148.
  9. Lopez-Echartea, Suman J, Smrhova T, Ridl J, Pajer P. Genomic analysis of dibenzofuran-degrading Pseudomonas veronii strain Pvy reveals its biodegradative versatility. G3. 2021;11(2): jkaa030.
  10. Jia Y, Yin H, Ye JS, Peng H, He BY, Qin HM, et al. Characteristics and pathway of naphthalene degradation by Pseudomonas sp. N7. Huan Jing Ke Xue. 2008;29(3):756-762.
  11. Xu P, Ma W, Han H, Hou B, Jia S. Characterization of naphthalene degradation by Streptomyces sp. QWE-5 isolated from active sludge. Water Science and Technology. 2014;70(6):1129-1134.
  12. Công LTN, Mai CTN, Huy VN, Tuân ĐV. Khả năng phân hủy naphthalene của chủng vi khuẩn VTPG5 phân lập tại các mẫu đất nhiễm dầu thu thập tại Bà Rịa – Vũng Tàu. Tạp chí Công nghệ Sinh học. 2016;14(3):573-579.
  13. Wang Z, Wang W, Li Y, Yang Q. Co-metabolic degradation of naphthalene and pyrene by acclimated strain and competitive inhibition kinetics. Journal of Environmental Science and Health, Part B. 2019;54(6):505-513.
  14. Thanh LTH, Thi TVN, Shintani M, Moriuchi R, Dohra H, Loc NH, et al. Isolation and characterization of a moderate thermophilic Paenibacillus naphthalenovorans strain 4B1 capable of degrading dibenzofuran from dioxin-contaminated soil in Vietnam. Journal of Bioscience and Bioengineering. 2019;128(5):571-577.
  15. JoVE Science Education Database. Microbiology. Growth Curves: Generating Growth Curves Using Colony Forming Units and Optical Density Measurements. Cambridge: JoVE; 2024.
  16. Madigan MT, Martinko JM, Bender KS, Buckley DH, Stahl DA. Brock Biology of Microorganisms, 14th ed. Glenview (USA): Pearson Education, Inc; 2014.
  17. Jaiswal PK, Kohli S, Gopal M, Thakur IS. Isolation and characterization of alkalotolerant Pseudomonas sp. strain ISTDF1 for degradation of dibenzofuran. Journal of Industrial Microbiology and Biotechnology. 2011;38(4):503-511.
  18. Kumar A, Poswal V, Kaur S, Mahajan A, Begum Z. Isolation and identification of naphthalene degradation bacteria. International Journal of Innovative Science and Research Technology. 2018;3(2):682-688.
  19. Abarian M, Hassanshahian M, Badoei-Dalfard A. Degradation of naphthalene by bacterial isolates from the Gol Gohar Mine, Iran. Progress in Biological Sciences. 2016;6(2):171-180.
  20. Peng P, Yang H, Li L. Biodegradation of dioxin by a newly isolated Rhodococcus sp. with the involvement of self-transmissible plasmids. Applied Microbiology and Biotechnology. 2013;97:5585-5595.
  21. Jin S, Zhu T, Xu X, Xu Y. Biodegradation of dibenzofuran by Janibacter terrae strain XJ-1. Current Microbiology. 2006;53(1):30-36.
  22. Le TT, Murugesan K, Nam IH, Jeon JR, Chang YS. Degradation of dibenzofuran via multiple dioxygenation by a newly isolated Agrobacterium sp. PH-08. Journal of Applied Microbiology. 2014;116(3):542-553.
  23. Tirkey SR, Ram S, Mishra S. Naphthalene degradation studies using Pseudomonas sp. strain SA3 from Alang-Sosiya ship breaking yard, Gujarat. Heliyon 7. 2021;e06334.
  24. Kaiya S, Utsunomiya S, Suzuki S, Yoshida N, Futamata H, Yamada T, et al. Isolation and functional gene analyses of aromatic-hydrocarbon-degrading bacteria from a polychlorinated-dioxin-dechlorinating process. Microbes and Environments. 2012;27:127-135.
  25. Yamazoe A, Yagi O, Oyaizu H. Degradation of polycyclic aromatic hydrocarbons by a newly isolated dibenzofuran-utilizing Janibacter sp. strain YY-1. Applied Microbiology and Biotechnology. 2004;65(2):211-218.
  26. Karimi B, Habibi M, Esvand M. Biodegradation of naphthalene using Pseudomonas aeruginosa by up flow anoxic-aerobic continuous flow combined bioreactor. Journal of Environmental Health Science and Engineering. 2015;13:26.
  27. Rabani MS, Sharma R, Singh R, Gupta MK. Characterization and identification of naphthalene degrading bacteria isolated from petroleum contaminated sites and their possible use in bioremediation. Polycyclic aromatic compounds. 2020;42(3): 978-989.
  28. Farjadfard S, Borghei SM, Hassani AH, Yakhchali B, Ardjmand M, Zeinali M. Efficient biodegradation of naphthalene by a newly characterized indigenous Achromobacter sp. FBHYA2 isolated from Tehran oil refinery complex. Water Science and Technology. 2012,66(3):594-602.
  29. Margesin R, Schinner F. Biodegradation and bioremediation of hydrocarbons in extreme environments. Applied Microbiology and Biotechnology. 2001;56(5-6):650-663.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2024 Array