Existence and linear conditioning for solutions of equilibrium problems in metric spaces
PDF

Keywords

existence of solutions
linear conditioning
equilibrium problems
metric spaces

How to Cite

1.
Le TNB, Nguyen TT, Nguyen TA. Existence and linear conditioning for solutions of equilibrium problems in metric spaces. hueuni-jns [Internet]. 2025Dec.24 [cited 2026Feb.5];134(1D):91-7. Available from: https://jos.hueuni.edu.vn/index.php/hujos-ns/article/view/7670

Abstract

In this paper, we provide sufficient conditions for the existence and linear conditioning of equilibrium problems in metric spaces. Our results improve and generalise some well-known results in the literature.

https://doi.org/10.26459/hueunijns.v134i1D.7670
PDF

References

  1. Al-Homidan S, Ansari QH, Kassay, G. Takahashi’s minimization theorem and some related results in quasi-metric spaces. Journal of Fixed Point Theory and Applications. 2019;21(1):38.
  2. Al-Homidan S, Ansari QH, Nguyen LV. Finite convergence analysis and weak sharp solutions for variational inequalities. Optimization Letters. 2017;11(8):1647-62.
  3. Alshahrani M, Al-Homidan S, Ansari QH. Weak sharp solutions for equilibrium problems in metric spaces. J Nonlinear Convex Anal. 2015;16(7);1185-1193.
  4. Antipin AS. On finite convergence of processes to a sharp minimum and to smooth minimum with a sharp derivative. Differ Equ. 1994;30:1703-1713.
  5. Babu F, Ali A, Alkhaldi AH. An extragradient method for non-monotone equilibrium problems on Hadamard manifolds with applications. Applied Numerical Mathematics. 2022;180:85-103.
  6. Bento GdC, Cruz Neto JX, Melo ÍDL. Combinatorial convexity in Hadamard manifolds: existence for equilibrium problems. Journal of Optimization Theory and Applications. 2022;195(3):1087-105.
  7. Bigi G, Castellani M, Pappalardo M, Passacantando M. Existence and solution methods for equilibria. European Journal of Operational Research. 2013;227(1):1-11.
  8. Blum E, Oettli W. From optimization and variational inequalities to equilibrium problems. Math Student. 1994;62(1):127-169.
  9. Burke JV, Ferris MC. Weak sharp minima in mathematical programming. SIAM Journal on Control and Optimization. 1993;31(5):1340-59.
  10. Colao V, López G, Marino G, Martín-Márquez V. Equilibrium problems in Hadamard manifolds. Journal of Mathematical Analysis and Applications. 2012;388(1):61-77.
  11. Combettes PL, Hirstoaga A. Equilibrium programming in Hilbert spaces. J Nonlinear Convex Anal. 2005;6:117-136.
  12. Cruz Neto J, Santos P, Soares P. An extragradient method for equilibrium problems on Hadamard manifolds. Optim. Lett. 2016; 10(6):1327–1336.
  13. Ferris MC. Weak Sharp Minima and Penalty Functions in Mathematical Programming [dissertation]. Cambridge: University of Cambridge; 1988.
  14. Konnov I. Equilibrium Models and Variational Inequalities. Amsterdam: Elsevier; 2007.
  15. Lemaire B. Well-Posedness, conditioning and regularization of minimization, inclusion and fixed-point problems. Pliska Stud Math Bulgar. 1998;12: 71-84.
  16. Marcotte P, Zhu DL. Weak sharp solutions of variational inequalities. SIAM Journal on Optimization. 1998;9(1):179-89.
  17. Moudafi A. On finite and strong convergence of a proximal method for equilibrium problems. Numerical Functional Analysis and Optimization. 2007;28(11-12):1347-54.
  18. Nguyen LV, Ansari QH, Qin X. Linear conditioning, weak sharpness and finite convergence for equilibrium problems. Journal of Global Optimization. 2020;77(2):405-24.
  19. Nguyen LV, Thu NT, An NT. Characterizations of weak sharp solutions for variational inequalities on Hadamard manifolds and applications. Journal of Industrial and Management Optimization. 2024;20(2):729-51.
  20. Polyak BT. Sharp Minima, Institute of Control Sciences Lecture Notes, Moscow, USSR (1979). Presented at the IIASA Workshop on Generalized Lagrangians and Their Applications, IIASA, Laxenburg, Austria; 1979.
  21. Quoc TD, Muu LD. Iterative methods for solving monotone equilibrium problems via dual gap functions. Computational Optimization and Applications. 2012;51(2):709-28.
  22. Senter HF, Dotson WG. Approximating fixed points of nonexpansive mappings. Proc Am Math Soc. 1974; 44:375-380.
  23. Wang X, López G, Li C, Yao J-C. Equilibrium problems on Riemannian manifolds with applications. Journal of Mathematical Analysis and Applications. 2019;473(2):866-91.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2025 Array