Isolation and characterisation of phosphate-solubilising bacteria from serpentine soils in Yen Bai Province
PDF

Keywords

Phosphate solubilizing bacteria
Serpentine soil
Burkholderia sp.
Biofertilizer

How to Cite

1.
Dinh MTN, Nguyen DQ, Pham HT, Tran DTP, Nguyen TKN, Nguyen HM. Isolation and characterisation of phosphate-solubilising bacteria from serpentine soils in Yen Bai Province. hueuni-jns [Internet]. 2025Dec.26 [cited 2025Dec.27];134(1S-3):61-7. Available from: https://jos.hueuni.edu.vn/index.php/hujos-ns/article/view/7932

Abstract

Phosphate-solubilising bacteria (PSB) contribute to plant phosphorus nutrition by transforming insoluble phosphates into bioavailable forms. In our work, PSB were isolated from serpentine soils in Yen Bai Province, Vietnam—an environment typified by low nutrient availability and elevated metal content. Forty-two bacterial isolates with phosphate-solubilising traits were screened in the NBRIP medium. Among them, strain VW132 demonstrated the highest solubilisation capacity and was taxonomically identified as Burkholderia sp. via 16S rRNA gene analysis. Strain VW132 reached maximum phosphate solubilisation of 359 mg/L when cultivated under optimised conditions, i.e, ammonium sulfate and glucose as nitrogen and carbon sources, 1% NaCl, and pH 7. However, phosphate solubilisation markedly declined at NaCl concentrations exceeding 1%, suggesting reduced salt tolerance. The relationship between soluble phosphate concentration and biofilm development was also investigated. Results show enhanced biofilm formation with increasing levels of K2HPO4, indicating a phosphate-dependent biofilm response.

https://doi.org/10.26459/hueunijns.v134i1S-3.7932
PDF

References

  1. Anand K, Kumari B, Mallick MA. Phosphate solubilizing microbes: An effective and alternative approach as biofertilizers. J Pharm Sci. 2016;8:37-40.
  2. Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus. 2013;2:587.
  3. Fernández V, Guzmán P, Peirce CA, McBeath TM, Khayet M, McLaughlin MJ. Effect of wheat phosphorus status on leaf surface properties and permeability to foliar-applied phosphorus. Plant Soil. 2014;384:7-20.
  4. Bindraban PS, Dimkpa CO, Pandey R. Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health. Biol Fertil Soils. 2020;56:299-317.
  5. Kumar R, Shastri B. Role of Phosphate-Solubilising Microorganisms in Sustainable Agricultural Development. In: Singh JS, Seneviratne G, editors. Agro-Environmental Sustainability: Volume 1: Managing Crop Health. Cham: Springer International Publishing; 2017. p. 271-303.
  6. Hussain A, Adnan M, Iqbal S, Fahad S, Saeed M, Mian IA, et al. Combining phosphorus (P) with phosphate solubilizing bacteria (PSB) improved wheat yield and P uptake in alkaline soil. Pure Appl Biol. 2019;8:1809-1817.
  7. Amy C, Avice J-C, Laval K, Bressan M. Are native phosphate-solubilizing bacteria a relevant alternative to mineral fertilizations for crops? Part II: PSB inoculation enables a halving of P input and improves the microbial community in the rapeseed rhizosphere. Rhizosphere. 2022;21:100480.
  8. Owen D, Williams AP, Griffith GW, Withers PJA. Use of commercial bio-inoculants to increase agricultural production through improved phosphrous acquisition. Appl Soil Ecol. 2015;86:41-54.
  9. Koskey G, Mburu SW, Awino R, Njeru EM, Maingi JM. Potential use of beneficial microorganisms for soil amelioration, Phytopathogen biocontrol, and sustainable crop production in smallholder agroecosystems. Front Sustain Food Syst. 2021;5:606308.
  10. Basiru S, Hijri M. The potential applications of commercial arbuscular mycorrhizal fungal inoculants and their ecological consequences. Microorganisms. 2022;10:1897.
  11. Azziz G, Bajsa N, Haghjou T, Taulé C, Valverde Á, Igual JM. Abundance, diversity and prospecting of culturable phosphate solubilizing bacteria on soils under crop-pasture rotations in a no-tillage regime in uruguay. Appl Soil Ecol. 2012;61:320-326.
  12. Sarkar A, Islam T, Biswas GC, Alam S, Hossain M, Talukder NM. Screening for phosphate solubilizing bacteria inhabiting the rhizoplane of rice grown in acidic soil in bangladesh. Acta Microbiol Immunol Hung. 2012;59:199-213.
  13. Nautiyal CS. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett. 1999;170:265-270.
  14. Kibrom FG, Alemayechu W, Prakasam VR and Kiros W. Isolation and characterization of efficient phosphate solubilizing Bacillus (PSB) from different agro-ecological zones of Tigray Soil, Ethiopia. Momona Ethiopian J Sci. 2017;9(2):262-273.
  15. Baliah NT, Pandiarajan G, Kumar BM. Isolation, identification and characterization of phosphate solubilizing bacteria from different crop soils of Srivilliputtur Taluk, Virudhunagar District, Tamil Nadu. Trop Ecol. 2016;57(3):465-474.
  16. Yulianti E, Rakhmawati A. Screening and characterization of phosphate solubilizing bacteria from isolate of thermophilic bacteria. AIP Conference Proceedings. 2017;1868(1):090015.
  17. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725-2729.
  18. Mehta S, Nautiyal CS. An efficient method for qualitative screening of phosphatesolubilizing bacteria. Curr Microbiol. 2001;43:51-56.
  19. O’Toole GA, Pratt LA, Watnick PI, Newman DK, Weaver VB, Kolter R. Genetic approaches to study of biofilms. Methods Enzymol. 1999;310:91-109.
  20. Yahya A, Azawi SKA. Occurrence of phosphate solubilizing bacteria in some Iranian soils. Plant and Soil. 1998;117:135-141.
  21. Kim KY, Jordan D, McDonald GA. Effect of phosphate-solubilizing bacteria (PSB) and in Iran is providing with organic matter in desperately VAM on tomato growth and soil microbial activities. Biol Fertil Soils. 1989;26:79-87.
  22. Mahenthiralingam E, Baldwin A, Dowson CG. Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. J Appl Microbiol. 2008;104(6):1539-1551.
  23. Patel DK, Archana G, Kumar N. Variation in the nature of organic acid secretion and mineral phosphate solubilization by Citrobacter sp. DHRSS in the presence of different sugars. Curr Mcrobiol. 2008;56:168-174.
  24. Dave A, Patel HH. Impact of different carbon and nitrogen sources on phosphate solubilization by Pseudomonas fluorescens. Indian J Microbiol. 2003;43:33-36.
  25. Ahuja A, Ghosh SB, D’Souza SF. Isolation of starch utilizing, phosphate solubilization fungus medium and its characterization. Bioresour Technol. 2007;98:3408-3411.
  26. Nautiyal CS, Bhadauria S, Kumar P, Lal H, Mondal R, Verma D. Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol Lett. 2000;182:291-296.
  27. Rinaudi L, Fujishige NA, Hirsch AM, Banchio E, Zorreguieta A, Giordano W. Effects of nutritional and environmental conditions on Sinorhizobium meliloti biofilm formation. Res Microbiol. 2006;157(9):867-875.
  28. Lehtola MJ, Miettinen IT, Martikainen PJ. Biofilm formation in drinking water affected by low concentrations of phosphorus. Canadian J Microbiol. 2002;48(6):494-499.
  29. Carriot N, Barry-Martinet R, Briand J-F, Ortalo-Magne A, Culioli G. Impact of phosphate concentration on the metabolome of biofilms of the marine bacterium Pseudoalteromonas lipolytica. Metabolomics. 2022;18(3):18.
  30. Ghosh R, Barma S, Chandra Mandal N. Phosphate deficiency induced biofilm formation of Burkholderia on insoluble phosphate granules plays a pivotal role for maximum release of soluble phosphate. Sci Rep. 2019;9:5477.
  31. Danhorn T, Hentzer M, Givskov M, Parsek Matthew R, Fuqua C. Phosphorus Limitation Enhances Biofilm Formation of the Plant Pathogen Agrobacterium tumefaciens through the PhoR-PhoB Regulatory System. Journal of Bacteriology. 2004;186(14):4492-501.
  32. Huang C-T, Xu KD, McFeters GA, Stewart PS. Spatial patterns of alkaline phosphatase expression with bacterial colonies and biofilms in response to phosphate starvation. Appl Environ Microbiol. 1998;64(4):1526-1531.
  33. Li Y, Narayanan M, Shi X, Chen X, Li Z, Ma Y. Biofilms formation in plant growth-promoting bacteria for alleviating agro-environmental stress. Sci Total Environ. 2024;907:167774.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2025 Array