Abstract
We performed a phylogenetic analysis of six strawberry cultivars using chloroplast rbcL, rpoC2, and nuclear ribosomal ITS2 sequences. The objectives of this study were to analyze the phylogenetic relationship of 6 strawberry cultivars (Bach Tuyet Trang, Nhat Sky, Ha Lan Hoa Hong, New zealand, Han Goseul and Hana) based on rbcL, rpoC2, and ITS2 regions. The results compared to Nucleotide BLAST GenBank showed a high level of similarity (97.57-99.15%) for the rbcL sequences, 98.40-98.86% for the rpoC2 sequences, and 93.32-99.37% for the ITS2 sequences, all of which were similar to Fragaria x ananassa. Our study indicated that rbcL and nuclear ribosomal ITS2 sequences increased the efficiency of the phylogenetic analysis, while rpoC2 sequences did not provide sufficient clarity to confidently resolve the evolutionary history of strawberry cultivars. Phylogenetic analysis using DNA barcode markers (ITS2, rbcL and rpoC2) through Maximum Parsimony resulted in clades with a high bootstrap value: 99 for HN-HG and bootstrap value of 75 for NZ and HL cultivars. Our findings suggest that DNA barcoding is an efficient tool for identifying the genetic diversity of these six strawberry cultivars and highlights the potential for this study to contribute to the conservation, sustainable genetic resources and breeding program of the Fragaria species.
References
- Hancock JF, Strawberries. Wallingford: CABI Publishing; 1999
- Darrow G. The strawberry. History, breeding and physiology. New York: Holt, Rinehart, Winston; 1966. xvi + 447 pp. p.
- Häkkinen SH, Törrönen AR. Content of flavonols and selected phenolic acids in strawberries and Vaccinium species: influence of cultivar, cultivation site and technique. Food Research International. 2000;33(6):517-24.
- Ozturk E S, Cekic C. The genetic relationship between some strawberry cultivars and F1 population derived from these cultivars. International Society for Horticultural Science (ISHS). 2020.
- Jofre-y-Garfias AE, Dávalos-González PA, Aguilar-García R, Rodríguez-Guillén A. The Genetic Diversity of Strawberry Species, the Underutilized Gene Pool and the Need for Cultivars with New Quality and Agronomic Attributes. In: Kafkas NEY, Oğuz İ, editors. Recent Studies on Strawberries. London: IntechOpen; 2022.
- Specialty Produce. Tochiotome strawberries information and facts [Internet]. San Diego (CA): Specialty Produce [cited 2025 Aug 14].
- Available from: https://www.specialtyproduce.com/produce/Tochiotome_Strawberries_15084.php
- Eats.jp. Tochiotome was registered as a variety in 1996, born from Kurume No. 49 × Tochi no Mine [Internet]. [cited 2025 Aug 14]. Available from: https://eats.jp/en/foods/10323
- Amazon Japan. Tochigi Prefecture Skyberry Strawberry [Internet]. [cited 2025 Aug 14]. Available from: https://www.amazon.co.jp/-/en/Tochigi-Prefecture-Skyberry-Strawberry-Deluxe/dp/B0CZ45NPS8
- Dalat Tourism Promotion Center. Snow White strawberry – The most delicious and rare strawberry in the world [Internet]. Dalat: Dalat.vn; c2024 [cited 2025 Aug 14]. Available from: https://dalat.vn/vi/detailnews/?id=news_187&t=snow-white-strawberry-the-most-delicious-and-rare-strawberry-in-the-world
- EU-Vietnam Business Network. New Zealand strawberries – Origin, provenance & wonderful health benefits [Internet]. 2024 [cited 2025 Aug 14]. Available from: https://evbn.org/dau-tay-new-zealand-1678662139
- Rowe K. 7 strawberry varieties with charming pink flowers [Internet]. Epic Gardening; 2025 Apr 29 [cited 2025 Aug 14]. Available from: https://www.epicgardening.com/strawberry-pink-flowers/
- Highland Agriculture Research Institute. Development of off-season strawberry varieties Goseul and Miha [Internet]. National Institute of Crop Science; 2024 [cited 2025 Aug 14]. Available from: https://www.nics.go.kr/u/700001490.do
- Lee J, Suh J, Nam J, Hong S, Kim S, Shon H, et al. Breeding of New Day-neutral Strawberry ‘Goseul’. Journal of the Korean Society of International Agricultue. 2020;32:42-6.
- Azizah UDL, Yulianti F, Adiredjo AL, Sitawati D. Genetic relationship analysis of strawberry (Fragaria sp.) based on morphology character and Random Amplified Polymorphic DNA (RAPD). Plantropica Journal of Agricultural Science. 2019;4(1):77-85.
- Corrêa, Jessica Vanessa Wosniak, Weber, G. G., Zeist, A. R., de Resende, J. T. V., & Da-Silva, P. R. . ISSR analysis reveals high genetic variation in strawberry three-way hybrids developed for tropical regions. Plant Molecular Biology Reporter, 2021,39(3):566-576.
- Debnath SC. Development of ISSR markers for genetic diversity studies in Vaccinium angustifolium. Nordic Journal of Botany. 2009;27 (2):141-148.
- Lim SH, Lee JY, Lee HJ, Park KH, Kim DS, Min SR. The genetic diversity among strawberry breeding resources based on SSRs. Scientia Agricola, 2017;74(3):226-234.
- Clark JR, Stafne ET, Hall HK, Finn CE. Blackberry breeding and genetics. Plant breeding reviews, 2007;29:19-152.
- Zhang HX, Zhang ML. Spatial patterns of species diversity and phylogenetic structure of plant communities in the Tianshan Mountains, arid Central Asia. Frontiers in Plant Science. 2017;8: 2134.
- Yu N, Wei YL, Zhang X, Zhu N, Wang YL, Zhu Y, et al. Barcode ITS2: a useful tool for identifying Trachelospermum jasminoides and a good monitor for medicine market. Scientific Reports. 2017;7(1): 5037.
- Baldwin BG. Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the Compositae. Molecular phylogenetics and evolution. 1992;1(1):3-16.
- Hamby RK, Zimmer EA. Ribosomal RNA as a phylogenetic tool in plant systematics. In: Molecular systematics of plants. Boston: Springer US; 1992. p. 50-91.
- Álvarez I, Wendel JF, Jonathan F. Ribosomal ITS sequences and plant phylogenetic inference. Molecular phylogenetics and evolution, 2003;29(3):417-434.
- Ansari S, Solouki M, Fakheri B, Fazeli-Nasab B, Mahdinezhad N. Assessment of molecular diversity of internal transcribed spacer region in some lines and landrace of Persian Clover (Trifolium resupinatum L.). Potravin Slovak J Food Sci, 2018;12(1):657-666.
- Chen S, Yao H, Han J, Liu C, Song J, Shi L, et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PloS one. 2010;5(1):e8613.
- Yao H, Song J, Liu C, Luo K, Han J, Li Y, et al. Use of ITS2 region as the universal DNA barcode for plants and animals. PloS one. 2010;5(10):e13102.
- Han J, Zhu Y, Chen X, Liao B, Yao H, Song J, et al. The short ITS2 sequence serves as an efficient taxonomic sequence tag in comparison with the full‐length ITS. BioMed research international 2013;2013(1):741476.
- Petit RJ, Excoffier L. Gene flow and species delimitation. Trends in Ecology & evolution. 2009;24(7):386-393.
- Naciri Y, Caetano S, Salamin N. Plant DNA barcodes and the influence of gene flow. Molecular Ecology Resources. 2012;12(4):575-580.
- Braukmann TWA, Kuzmina ML, Sills J, Zakharov EV, Hebert PDN. Testing the efficacy of DNA barcodes for identifying the vascular plants of Canada. PLoS One. 2017;12(1):e0169515.
- Soltis DE, Bell CD, Kim S, Soltis PS. Origin and early evolution of angiosperms. Annals of the New York Academy of Sciences. 2008;1133(1):3-25.
- Feliner GN, Rosselló JA. Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants. Molecular Phylogenetics and Evolution. 2007;44(2):911-919.
- Bailey PC, Martin C, Toledo-Ortiz G, Quail PH, Huq E, Heim MA, et al. Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana. The Plant Cell. 2003;15(11):2497-2502.
- Kress WJ, Erickson DL. A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS One. 2007;2(6):e508.
- Lahaye R, van der Bank M, Bogarin D, Warner J, Pupulin F, Gigot G, et al. DNA barcoding the floras of biodiversity hotspots. Proceedings of the National Academy of Sciences USA. 2008;105(8):2923-8.
- Parks M, Cronn R, Liston A. Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biology. 2009;7(1):84.
- Qiao J, Cai M, Yan G, Wang N, Li F, Chen B, et al. High-throughput multiplex cpDNA resequencing clarifies the genetic diversity and genetic relationships among Brassica napus, Brassica rapa and Brassica oleracea. Plant Biotechnology Journal. 2016;14(1):409-418
- Jiao LC, Lu Y, He T, Li JN, Yin YF. A strategy for developing high-resolution DNA barcodes for species discrimination of wood specimens using the complete chloroplast genome of three Pterocarpus species. Planta. 2019;250:95-104.
- Liu ZF, Ma H, Ci XQ, Li L, Song Y, Liu B, et al. Can plastid genome sequencing be used for species identification in Lauraceae? Botanical Journal of the Linnean Society. 2021;197(1):1-14.
- Jheng C-F, Chen T-C, Lin J-Y, Chen T-C, Wu W-L, Chang C-C. The comparative chloroplast genomic analysis of photosynthetic orchids and developing DNA markers to distinguish Phalaenopsis orchids. Plant Science. 2012;190:62-73.
- Kim KJ, Jansen RK, Wallace RS, Michaels HJ, Palmer JD. Phylogenetic implications of rbcL sequence variation in the Asteraceae. Annals of the Missouri Botanical Garden. 1992;79:428-445.
- Soltis DE, Kuzoff RK, Conti E, Gornall R, Ferguson K. matK and rbcL gene sequence data indicate that Saxifraga (Saxifragaceae) is polyphyletic. American Journal of Botany. 1996;83(3):371-82.
- Cummings MP, King LM, Kellogg EA. Slipped-strand mispairing in a plastid gene: rpoC2 in grasses (Poaceae). Molecular Biology and Evolution. 1994;11(1):1-8.
- Barker NH, Linder P, Harley E. Sequences of the grass-specific insert in the chloroplast rpoC2 gene elucidate generic relationships of the Arundinoideae (Poaceae). Systematic Botany. 1999;23(3):327-336.
- Duvall MR, Doebley JF. Restriction site variation in the chloroplast genome of Sorghum (Poaceae). Systematic Botany. 1990;15(3):472-480.
- Moon JC, Kim JH, Jang CS. Development of multiplex PCR for species-specific identification of the Poaceae family based on chloroplast gene, rpoC2. Applied Biological Chemistry. 2016;59(2):201-207.
- Gu W, Song J, Cao Y, Song J, Sun Q, Yao H, et al. Application of the ITS2 region for barcoding medicinal plants of Selaginellaceae in Pteridophyta. PLoS One. 2013;8(6):e67818.
- Song J, Yao H, Li Y, Yao H, Li Y, Li X, et al. Authentication of the family Polygonaceae in Chinese pharmacopoeia by DNA barcoding technique. Journal of Ethnopharmacology. 2009;124 3):434-439.
- Njuguna W, Liston A, Cronn R, Ashman TL, Bassil N. Insights into phylogeny, sex function and age of Fragaria based on whole chloroplast genome sequencing. Molecular Phylogenetics and Evolution. 2013;66(1):17-29.
- Karp A, Institute IPGR. Molecular Tools in Plant Genetic Resources Conservation: A Guide to the Technologies: IPGRI; 1997.
- Kress WJ, Prince LM, Williams KJ. The phylogeny and a new classification of the gingers (Zingiberaceae): evidence from molecular data. American Journal of Botany. 2002;89(10):1682-1696.
- Potter D, Gao F, Bortiri PE, Oh SH, Baggett S. Phylogenetic relationships in Rosaceae inferred from chloroplast matK and trnL-trnF nucleotide sequence data. Plant Systematics and Evolution. 2002;231(1-4):77-89.
- Mosa KA, Gairola S, Jamdade R, El-Keblawy A, Al Shaer KI, Al Harthi EK, et al. The promise of molecular and genomic techniques for biodiversity research and DNA barcoding of the Arabian Peninsula Flora. Frontiers in Plant Science. 2019;Volume 9 - 2018.
- Raclariu AC, Heinrich M, Ichim MC, De Boer H. Benefits and limitations of DNA barcoding and metabarcoding in herbal product authentication. Phytochemical Analysis. 2018;29(2):123-128.
- Pang X, Song J, Zhu Y, Xu H, Huang L. Chen S. Applying plant DNA barcodes for Rosaceae species identification. Cladistics. 2011;27(2):165-170.
- Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH. Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences. 2005;102(23):8369-8374.
- Ahmed I, Biggs PJ, Matthews PJ, Collins LJ, Hendy MD, Lockhart PJ. Mutational dynamics of aroid chloroplast genomes. Genome Biology and Evolution. 2012;4(12):1316-1323.
- Reddy BU. Cladistic analyses of a few members of Cucurbitaceae using rbcL nucleotide and amino acid sequences. International Journal of Bioinformatics Research. 2009;1:58-64
- Li X, Zhang T-C, Qiao Q, Ren Z, Zhao J, Yonezawa T, et al. Complete Chloroplast Genome Sequence of Holoparasite Cistanche deserticola (Orobanchaceae) Reveals Gene Loss and Horizontal Gene Transfer from Its Host Haloxylon ammodendron (Chenopodiaceae). PLOS ONE. 2013;8(3):e58747.
- Lin C-S, Chen JJW, Huang Y-T, Chan M-T, Daniell H, Chang W-J, et al. The location and translocation of ndh genes of chloroplast origin in the Orchidaceae family. Scientific Reports. Scientific Reports. 2015;5(1):9040.
- Gomolińska AM, Szczecińska M, Sawicki J, Krawczyk K, Szkudlarz P. Phylogenetic analysis of selected representatives of the genus Erica based on the genes encoding the DNA-dependent RNA polymerase I. Biodiversity: Research and Conservation. 2017;46:1-18.
- van Velzen R, Weitschek E, Felici G, Bakker FT. DNA Barcoding of Recently Diverged Species: Relative Performance of Matching Methods. PLOS ONE. 2012;7(1):e30490.
- Ran J-H, Wang P-P, Zhao H-J, Wang X-Q. A Test of Seven Candidate Barcode Regions from the Plastome in Picea (Pinaceae). Journal of Integrative Plant Biology. 2010;52(12):1109-26.
- Poyraz I. Comparison of ITS, RAPD and ISSR from DNA-based genetic diversity techniques. Comptes Rendus. Biologies. 2016;339(5-6):171-8.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2025 Array