CHẾ TẠO HỆ GỐM KHÔNG CHÌ ĐỊNH HƯỚNG 0,8Bi0,5Na0,5TiO3 – 0,2Bi0,5K0,5TiO3
PDF

Từ khóa

Bi4Ti3O12
BNKT
Na2CO3 – K2CO3
gốm không chì Bi4Ti3O12
BNKT
Na2CO3 – K2CO3
lead-free ceramics

Cách trích dẫn

1.
Đại Vương L, Anh Quang Đào, Anh Tuấn Đặng, Ngọc Trác N, Khánh Quang N, Thị Thanh Kiều V, Duy Hồng Ngoc Đào. CHẾ TẠO HỆ GỐM KHÔNG CHÌ ĐỊNH HƯỚNG 0,8Bi0,5Na0,5TiO3 – 0,2Bi0,5K0,5TiO3. hueuni-jns [Internet]. 11 Tháng Mười-Một 2019 [cited 3 Tháng Bảy 2024];128(1C):55-62. Available at: https://jos.hueuni.edu.vn/index.php/hujos-ns/article/view/5342

Tóm tắt

Trong nghiên cứu này, các khuôn Bi4Ti3O12 (BiT) được tổng hợp bằng phương pháp muối nóng chảy trong hỗn hợp Na2CO3 – K2CO3. Các khuôn BiT hình thành và phát triển tốt tại nhiệt độ nung 1050 °C với hình dạng tấm rõ ràng với kính thước trung bình khoảng 5–20 μm và độ dày khoảng 0,5–1 μm. Từ các khuôn BiT trên, chúng tôi đã nghiên cứu chế tạo gốm không chì 0,8Bi0,5Na0,5TiO3 – 0,2Bi0,5K0,5TiO3 sử dụng kỹ thuật định hướng. Ảnh hưởng của nhiệt độ thiêu kết đến cấu trúc và độ định hướng của hệ gốm đã được khảo sát. Tất cả các mẫu gốm đều có pha perovskite tinh khiết với cấu trúc pha mặt thoi trong vùng nhiệt độ thiêu kết từ 950 đến 1050 °C. Tại 1050 °C, hệ gốm có tính chất vật lý tốt nhất: khối lượng riêng của gốm là 5,94 g/cm3 (đạt 98,84% giá trị lý thuyết) và độ định hướng đạt giá trị cao nhất là 65%.

https://doi.org/10.26459/hueuni-jns.v128i1C.5342
PDF

Tài liệu tham khảo

  1. Vuong LD, Gio PD, Tho NT, Chuong TV. Relaxor ferroelectric properties of PZT-PZN-PMnN Ceramics, Indian Journal of Engineering & Materials Sciences. 2013;20:555-560.
  2. Vuong LD, Tho NT. The sintering behavior and physical properties of Li2CO3-doped Bi0.5 (Na0.8K0.2)0.5TiO3 lead-free ceramics, International Journal of Materials Research. 2017; 108(3):222-227.
  3. Vuong LD, Gio PD. Structure and Electrical Properties of Fe2O3-Doped PZT-PZN-PMnN Ceramics. Journal of Modern Physics. 2014; 5(14): 1258–1263.
  4. Vuong LD, Gio PD. Structure and Electrical Properties of Fe2O3-Doped PZT-PZN-PMnN Ceramics, Journal of Modern Physics. 2014; 5(14):1258.
  5. Giớ PĐ, Vương LĐ. Ảnh hưởng của nồng độ PMnN đến cấu trúc và tính chất áp điện cảu hệ gốm PZT-PZN-PMnN, Hue University Journal of Science. 2013;65(2).
  6. Vuong LD, Gio PD, Quang NDV, Dai Hieu T, Nam TP. Development of 0.8Pb(Zr0.48Ti0.52)O3–0.2Pb[(Zn1/3 Nb2/3)0.625(Mn1/3Nb2/3)0.375]O3 ceramics for high-inten-sity ultrasound applications. Journal of Electronic Materials. 2018;47(10):5944–5951.
  7. Smolenskii G. New Ferroelectrics of Complex Composition IV. Fiz. Tverd. Tela. 1960;2:2906.
  8. Watanabe H, Kimura T, Yamaguchi T. Sintering of platelike bismuth titanate powder compacts with preferred orientation. Journal of the American Ceramic Society. 1991; 74(1):139-147.
  9. Gio PD, Hong NVD, Vuong LD. Effect of excess Bi2O3 content on the structure and dielectric, piezoe-lectric properties of Bi0. 5(Na0.8K0. 2)0.5TiO3 lead free ceramics. Advanced Porous Materials. 2015; 3(1):29–32.
  10. Gio PD, Viet HQ, Vuong LD, Low-temperature sintering of 0.96(K0.5Na0.5)NbO3-0.04LiNbO3 lead-free piezoelectric ceramics modified with CuO, International Journal of Materials Research. 2018; 109(11):1071–1076.
  11. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nakamura MJN. Lead-free piezoceramics. 2004; 432(7013):84.
  12. Gio PD, D. VL. Effect of Sintering Temperature on Microstructure and Physical Properties of CuO-doped 0.96(K0.5Na0.5)NbO3-0.04LiNbO3 Lead-Free Piezoelectric Ceramics, Adv. Sci. Eng. Med.. 2019; 11(6):499–503.
  13. Tuan DA, Tung VT, Vuong LD, Yen NH, Tu LTU. Investigation of phase formation and poling conditions of lead-free 0.48Ba(Zr0.2Ti0.8)O3–0.52(Ba0.7Ca0.3)TiO3 ce-ramic. Journal of Elec Materi. 2018;47(10):6297–6301.
  14. Tuan DA, Vuong LD, Tung VT, Tuan NN, Duong NT. Dielectric and ferroelectric characteristics of
  15. doped BZT-BCT ceramics sintered at low temperature. Journal of Ceramic Processing Research. 2018;19(1):32–36.
  16. Alkoy S, Dursun S. Processing and properties of textured potassium strontium niobate (KSr2Nb5O15) ceramic fibers–texture development. Journal of the American Ceramic Society. 2012;95(3):937–945.
  17. Amorín H, Uršič H, Ramos P, Holc J, Moreno R, Chateigner D. Algueró M, Pb(Mg1/3Nb2/3)O3–PbTiO3 textured ceramics with high piezoelectric response by a novel templated grain growth approach. Journal of the American Ceramic Society. 2014; 97(2):420–426.
  18. Čontala A, Kržmanc MM, Suvorov DJaCS. Plate-Like Bi4Ti3O12 Particles and their Topochemical Conversion to SrTiO3 Under Hydrothermal Conditions. 2018;65(3):630–637.
  19. Lotgering F. Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—I, Journal of Inorganic Nuclear Chemistry. 1959;9(2):113–123.
  20. Ng SH, Xue J, Wang J. Bismuth titanate from mechanical activation of a chemically coprecipitated precursor, Journal of the American Ceramic Society. 2002;85(11):2660–2665.
  21. Furushima R, Tanaka S, Kato Z, Uematsu K. Orientation distribution–Lotgering factor relationship in a polycrystalline material—as an example of bismuth titanate prepared by a magnetic field. Journal of the Ceramic Society of Japan. 2010; 118(1382):921–926.
  22. Ebrahimi ME, Allahverdi M, Safari A. Synthesis of high aspect ratio platelet SrTiO3, Journal of the American Ceramic Society. 2005;88(8):2129–2132.
  23. Kimura T, Yamaguchi T. Fused salt synthesis of Bi4Ti3O12, Ceramics International, 1983;9(1):13–17.
  24. Kimura T, Yamaguchi T, Morphology control of electronic ceramic powders by molten salt synthesis, Advances in Ceramics. 1987;21:169.
  25. Kimura T, Takahashi T, Tani T, Saito Y. Preparation of crystallographically textured Bi0.5Na0.5TiO3–BaTiO3 ceramics by reactive-templated grain growth method. Ceramics International. 2004;30(7):1161–1167.
  26. Gonçalves RP, Da Silva FF, Picciani PH, Dias ML. Morphology and thermal properties of core-shell PVA/PLA ultrafine fibers produced by coaxial electrospinning. Materials Sciences Applications. 2015;6(02):189.
  27. Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas O. Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules. 2010; 11(3):674-681.
  28. Rianjanu A, Kusumaatmaja A, Suyono EA, Triyana K. Solvent vapor treatment improves mechanical strength of electrospun polyvinyl alcohol nanofibers. Heliyon. 2018;4(4):e00592.
  29. Liu L, Fan H, Ke S, Chen X. Effect of sintering temperature on the structure and properties of cerium-doped 0.94(Bi0.5Na0.5)TiO3 – 0.06BaTiO3 piezoelectric ceramics. Journal of Alloys and Compounds. 2008;458(1–2):504-508.
  30. Alkathy MS, Hezam A, Manoja K, Wang J, Cheng C, Byrappa K, Raju KJ. Effect of sintering temperature on structural, electrical, and ferroelectric properties of lanthanum and sodium co-substituted barium titanate ceramics. Journal of Alloys and Compounds. 2018;762:49–61.
  31. Naceur H, Megriche A, El Maaoui M. Effect of sintering temperature on microstructure and electrical properties of Sr1−x(Na 0.5Bi 0.5)xBi2Nb2O9 solid solutions. Journal of Advanced Ceramics. 2014;3(1):17–30.
  32. Ullah A, Ahn CW, Hussain A, Kim IW. The effects of sintering temperatures on dielectric, ferroelectric and electric field-induced strain of lead-free Bi0.5(Na0.78K0.22)0.5TiO3 piezoelectric ceramics synthesized by the sol–gel technique. Current Applied Physics. 2010;10(6):1367–1371.
  33. Jing X, Li Y, Yang Q, Zeng J, Yin Q. Influence of different templates on the textured Bi0. 5(Na1−xKx)0.5 TiO3 piezoelectric ceramics by the reactive templated grain growth process, Ceramics international. 2004;30(7):1889-1893.
  34. Fuse K, Kimura TJJOTaCS. Effect of particle sizes of starting materials on microstructure development in textured Bi0.5(Na0.5K0.5)0.5TiO3. 2006;89(6):1957-1964.
  35. Wu M, Li Y, Wang D, Zeng J, Yin Q. ABS-064: Grain oriented (Na0.5Bi0.5)0.94Ba0.06TiO3 piezoceramics prepared by the screen-printing multilayer grain growth technique. Journal of Electroceramics. 2007;22(1-3):131-135.
  36. Zhao J, Wang F, Li W, Li H, Zhou D, Gong S, Hu Y, Fu Q. Grain-oriented sodium bismuth titanate-based lead-free piezoelectric ceramics prepared using the pulsed strong magnetic field and template grain growth. Journal of Applied Physics. 2010;108(7):073535.
  37. Chang Y, Lee S, Poterala S, Randall CA, Messing GL. A critical evaluation of reactive templated grain growth (RTGG) mechanisms in highly [001] textured Sr0.61Ba 0.39Nb2O6 ferroelectric-thermoelectrics. Journal of Materials Research. 2011;26(24):3044–3050.
  38. Wei D-D, Yuan Q-B, Zhang G-Q, Wang H. Templated grain growth and piezoelectric properties of <001>-textured PIN–PMN–PT ceramics, Journal of Materials Research. 2015; 30(14):2144–2150.
Creative Commons License

công trình này được cấp phép theo Creative Commons Ghi công-Chia sẻ tương tự 4.0 License International .

Bản quyền (c) 2019 Array