LOẠI BỎ CHÌ KHỎI NƯỚC THẢI CÔNG NGHIỆP BẰNG CÂY CỎ MỰC (Eclipta alba)
PDF

Từ khóa

Eclipta Alba
xử lý thực vật
Nước thải công nghiệp
hệ số cô đặc sinh học
hệ số chuyển vị Eclipta Alba
phytoremediation
industrial wastewater
bioconcentration factor
translocation factor

Cách trích dẫn

1.
Đỗ Quang T. LOẠI BỎ CHÌ KHỎI NƯỚC THẢI CÔNG NGHIỆP BẰNG CÂY CỎ MỰC (Eclipta alba). hueuni-jns [Internet]. 29 Tháng Ba 2024 [cited 13 Tháng Năm 2024];133(1A):53-62. Available at: https://jos.hueuni.edu.vn/index.php/hujos-ns/article/view/7174

Tóm tắt

Một trong những vấn đề môi trường chính đang diễn ra là ô nhiễm nguồn nước và đất bởi các kim loại nặng độc hại. Mục đích của nghiên cứu này nhằm đánh giá tiềm năng của cây cỏ Mực (Eclipta alba) trong việc loại bỏ ion chì (Pb2+) khỏi nước bị ô nhiễm bằng kỹ thuật xử lý ô nhiễm thực vật và nghiên cứu ảnh hưởng của một số điều kiện môi trường (nồng độ Pb, thời gian tiếp xúc và giá trị pH) đến hiệu quả loại bỏ Pb của cây cỏ Mực. Kết quả nghiên cứu cho thấy ở nồng độ 50 ppm cây cỏ Mực có hiệu quả loại bỏ ion Pb2+ cao nhất (99,34%) sau 7 ngày xử lý. Ngoài ra, kết quả cũng cho thấy pH 7 là pH tối ưu cho việc loại bỏ Pb bằng cỏ Mực (hiệu suất đạt 98,95%). Kết quả phân tích cho thấy sau 7 ngày xử lý ở pH=7 khả năng tích lũy Pb của rễ, thân và lá lần lượt là 2861,2 mg/kg, 2497,1 mg/kg và 503,2 mg/kg. Hơn nữa, kết quả cho thấy cỏ Mực có hệ số chuyển vị (TF) >1 và có hệ số cô đặc sinh học (BCF) của chồi lớn hơn 1 cho Pb; do đó, cây cỏ Mực phù hợp cho quá trình tách Pb từ nước thải bị nhiễm chì.

https://doi.org/10.26459/hueunijns.v133i1A.7174
PDF

Tài liệu tham khảo

  1. Aransiola SA, Ijah UJJ, Abioye OP, Bala JD. Microbial-aided Phytoremediation of Heavy Metals Contaminated Soil: A Review. European Journal of Biological Research. 2019;9(2):104-125.
  2. Xiao C, Guo S, Wang Q, Chi R. Enhanced reduction of Lead Bioavailability in Phosphate Mining Wasteland Soil by a Phosphate-solubilizing Strain of Pseudomonas sp. LA, Coupled with Ryegrass (Lolium perenne L.) and Sonchus (Sonchus oleraceus L.). Environmental Pollution. 2021;274:116572.
  3. Bortoloti G, Baron D. Phytoremediation of Toxic Heavy Metals by Brassica Plants: a Biochemical and Physiological Approach. Environmental Advances. 2022;8:100204.
  4. Yahaghi Z, Shirvani M, Nourbakhsh F, de la Peña TC, Pueyo JJ, Talebi M. Isolation and Characterization of Pb-solubilizing Bacteria and Their Effects on Pb Uptake by Brassica juncea: Implications for Microbe-assisted Phytoremediation. Journal of Microbiology and Biotechnology. 2018;28(7):1156-1167.
  5. Noble A, Tanee FBG, Osuji J. The Effect of Ripe Plantain Peels Waste on the Phytoextraction of Pb and Cd by Echinochloa colona (L.) Link. International Journal of Natural Resource Ecology and Management. 2018;3(1):19.
  6. Do QT, Luu TA, Dao MT. Phosphate-solubilizing Bacteria Enhance the Growth and Lead Removal of Weed Plants (Echinochloa colona). Acta Fytotechnica et Zootechnica. 2022;5(4):333-341.
  7. Do QT. Enhance the Phytoremediation Efficiency of Echinochloa colona for Pb-contaminated Soil by Phosphorus Solubilizing Bacteria. Acta Agriculturae Slovenica. 2022;118(3):1-9.
  8. Boonyapookana B, Parkplan P, Techapinyawat S, De Laune RD, Jugsujinda A. Phytoaccumulation of Lead by Sunflower (Helianthus annuus), Tobacco (Nicotianatabacum), and Vetiver (Vetiveriazizanioides). Journal of Environmental Science and Health, Part A, Toxic/Hazardous Substances and Environmental Engineering. 2005;40:117-137.
  9. Jasoni RL, Cothren JT, Morgan PW, Sohan DE. Circadian Ethylene Production in Cotton. Plant Growth Regulation. 2002;36(2):31-37.
  10. Harley JP, Prescott LM. Laboratory Excesses in Microbiology. 3rd ed. Boston (USA): McGraw-Hill; 1996.
  11. Hinchman RR, Negri MC, Gatliff EG. Phytoremediation: Using Green Plants to Clean up Contaminated Soil, Groundwater, and Wastewater. Argonne National Laboratory Hinchman, Applied Natural Sciences, Inc; 1995.
  12. Wang X, Zhou QX. Distribution Forms of Cadmium, Lead, Copper and Zinc in Soil and Its Influences by Modifier. Journal of Agro-Environment Science. 2003;22:541-545.
  13. Price WJ. Spectrochemical Analysis by Atomic Absorption. London (UK): Heydon and Sons Ltd. 1979;254-255.
  14. United States Environmental Protection Agency (USEPA). Introduction to Phytoremediation. EPA 600/R-99/107, U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH; 2000.
  15. Chandrasekher C, Ray JG. Copper Accumulation, Localization and Antioxidant Response in Eclipta alba L. in Relation to Quantitative Variation of the Metal in Soil. Acta Physiologiae Plantarum. 2017;39:205.
  16. Charazińska S, Burszta-Adamiak E, Lochyński P. The Efficiency of Removing Heavy Metal Ions from Industrial Electropolishing Wastewater Using Natural Materials. Scientific Reports. 2022;12:17766.
  17. Fahad HG. A Study of Efficiency of Different Microorganisms in Thorium Sorption from Aqueous Solutions [Thesis]. Baghdad: College of Science, Baghdad University; 1994.
  18. Dhabab JM. Removal of Some Heavy Metal Ions from Their Aqueous Solutions by Duckweed. Toxicology and Environmental Health Sciences. 2011;3(6):164-170.
  19. Gallardo T, Maria B, Robert F, Martin F. Lead Accumulation by Three Aquatic Plants. Symposia papers presented before the division of Environmental Chemistry. American Chemical Society. 1999;39(2):46-47.
  20. Al-Bayati SMH. Removal of Copper and Lead Metals from Water Ecosystem by Water Hyacinth Eichhorniacrassipes (Mart.) Solm [Thesis]. Baghdad: College of Science for women, University of Baghdad; 2008.
  21. Lindsay WL. Chemical Equilibria in Soils. New York: John Wiley and Sons; 1979.
  22. Forsner U, Wittman GT. Metal Pollution in the Aquatic Environment. 2nd edition. Berlin: Springer -Verlag; 1981.
  23. Esposito A, Pagnanelli F, Veglio FI. Plant Proving Their Worth in Toxic Metal. Chemical Engineering Science. 2002;57:307-313.
  24. Goswami R, Thakur R, Sarma KP. Uptake of Lead from Aqueous Solution using Eichhomia crassipes: Effect on Chlorophyll Content and Photosynthetic Rate. International Journal of ChemTech Research. 2010;2(3):1702-1705.
  25. Baharudin B, Mohd S. Lead and Cadmium Removal in Synthetic Wastewater Using Constructed Wetland. Faculty of Chemical & Natural Resources Eng. Pahang: University Pahang; 2008.
  26. Traunfeld JH, Clement DL. Lead in Garden Soils. Home and Garden. Maryland Cooperative Extention, Maryland: University of Maryland; 2001.
  27. Uysal Y, Taner F. Effect of pH, Temperature and Lead Concentration on the Bioremoval of Lead from Water Using L. minor. International Journal of Phytoremediation. 2009;11:591-608.
  28. Chong Y, Hu H, Qian Y. Effects of Inorganic Nitrogen Compounds and pH on the Growth of Duckweed. Journal of Environmental Sciences. 2003;24:35-40.
  29. Ashokkumar B, Jothiramalingam S, Thiyagarajan SK, Hidhayathullakhan T, Nalini R. Phytoremediation of Tannery Polluted Soil Using Eclipta Alba (karisalankanni). International Journal of Current Research in Chemistry and Pharmaceutical Sciences. 2014;1(3):01-05.
  30. Marrugo-Negrete J, Marrugo-Madrid S, Pinedo-Hernández J, Durango-Hernández J, Díez S. Screening of Native Plant Species for Phytoremediation Potential at a Hg-contaminated Mining Site. Science of the Total Environment. 2016;542:809-816.
  31. Ghori NH, Ghori T, Hayat MQ, Imadi SR, Gul A, Altay V, et al. Heavy Metal Stress and Responses in Plants. International Journal of Environmental Science and Technology. 2019;16:1807-1828.
  32. Shaik J, Sumithra S, Senthilkumar P. Mercury Uptake and Translocation by Indigenous Plants. Rasayan Journal of Chemistry. 2018;11:1-12.
  33. Verbruggen N, Hermans C, Schat H. Molecular Mechanisms of Metal Hyperaccumulation in Plants. New Phytologist. 2009;181(4):759-776.
  34. Gupta AK, Sinha S. Phytoextraction Capacity of the Chenopodium album L. Growing on Soil Amended with Tannery Sludge. Bioresource technology. 2007;98:442-446.
  35. MacFarlane GR, Koller CE, Blomberg SP. Accumulation and Partitioning of Heavy Metals in Mangroves: A Synthesis of Field-based Studies. Chemosphere. 2007;69:1454-1464.
  36. Ahmad A, Ghufran R, Zularisam AW. Phytosequestration of Metals in Selected Plants Growing on a Contaminated Okhla Industrial Areas, Okhla, New Delhi, India. Water Air Soil Pollution. 2011;217:255-266.
  37. Nazir A, Malik RN, Ajaib M, Khan N, Siddiqui MF. Hyperaccumulators of Heavy Metals of Industrial Areas of Islamabad and Rawalpindi. Pakistan Journal of Botany. 2011;43(4):1925-1933.
  38. Kim IS, Kang HK, Johnson-Green P, Lee EJ. Investigation of Heavy Metal Accumulation in Polygonum thunbergii for Phytoextraction. Environmental Pollution. 2003;126:235-243.
  39. Yoon Y, Cao X, Zhou Q, Ma LQ. Accumulation of Pb, Cu, and Zn in Native Plants Growing on a Contaminated Florida Site. Science of the Total Environment. 2006;368:456-464.
  40. Sun YB, Zhou QX, Diao CY. Effects of Cadmium and Arsenic on Growth and Metal Accumulation of Cd Hyperaccumulator Solanum nigrum L. Bioresource Techology. 2008;99:1103-1110.
Creative Commons License

công trình này được cấp phép theo Creative Commons Ghi công-Chia sẻ tương tự 4.0 License International .

Bản quyền (c) 2024 Array