3D CdS/ZnO/Pt/WO3 nanostructure electrode for enhancing photoelectrochemical water splitting
PDF (Vietnamese)

Keywords

cấu trúc 3D
thanh nano ZnO/CdS cấu trúc phân lớp dị thể
tấm WO3
tách nước quang điện hóa
sản xuất hydro 3D structure
heterojunction layers
CdS/ZnO/Pt/WO3 electrode
hydrogen production
photoelectrochemical cell

How to Cite

1.
Hiên TT, Vũ TB, Phan TB, Mai TTT, Mẫn MT, Nguyễn T Đại, Trần TT, Chu TTH, Trần TMN, Nguyễn MH. 3D CdS/ZnO/Pt/WO3 nanostructure electrode for enhancing photoelectrochemical water splitting. hueuni-jns [Internet]. 2021Sep.30 [cited 2025Jan.9];130(1C):31-4. Available from: https://jos.hueuni.edu.vn/index.php/hujos-ns/article/view/5887

Abstract

In this work, we report the synthesis of the hierarchical structure of a CdS/ZnO/Pt/WO3 electrode for photoeletrochemical water splitting application. The photoanode was synthesized via the hydrothermal and atomic layer deposition methods. The morphological and structural properties of CdS/ZnO/Pt/WO3 nanoplates were carefully investigated by using SEM, TEM, and XRD techniques. The CdS/ZnO/Pt/WO3-based photoelectrode has a photocurrent density of 8,5 mA·cm-2 and a photoconversion efficiency of 7.9% at a supplied potential of –0,85 V in a 0.5 M Na2S solution. This photocurrent density is twice higher than that of the CdS/ZnO/FTO electrode. Due to built-in potential and efficiently collecting the photo-carriers generated from the ZnO/CdS heterojunction under illumination, the CdS/ZnO/Pt/WO3 electrode exhibits enhanced performance of the photoelectrochemical cell. This is a promising approach to the synthesis of heterojunction layers of semiconductor together with nanostructures for fabricating photoelectrodes of the photoelectrochemical cell to enhance hydrogen production efficiency.

https://doi.org/10.26459/hueunijns.v130i1C.5887
PDF (Vietnamese)

References

  1. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238(5358):37-8.
  2. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, et al. Solar water splitting cells. Chemical reviews. 2010;110(11):6446-73.
  3. Li X, Yu J, Low J, Fang Y, Xiao J, Chen X. Engineering heterogeneous semiconductors for solar water splitting. Journal of Materials Chemistry A. 2015;3(6):2485-534.
  4. Li Z, Luo W, Zhang M, Feng J, Zou Z. Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy & Environmental Science. 2013;6(2):347-70.
  5. Abe R. Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2010;11(4):179-209.
  6. Van de Krol R, Grätzel M. Photoelectrochemical hydrogen production: Springer; 2012.
  7. Khaselev O, Turner JA. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science. 1998;280(5362):425-7.
  8. Peharz G, Dimroth F, Wittstadt U. Solar hydrogen production by water splitting with a conversion efficiency of 18%. International Journal of Hydrogen Energy. 2007;32(15):3248-52.
  9. Licht S, Wang B, Mukerji S, Soga T, Umeno M, Tributsch H. Efficient solar water splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis. The Journal of Physical Chemistry B. 2000;104(38):8920-4.
  10. Heller A, Vadimsky RG. Efficient solar to chemical conversion: 12% efficient photoassisted electrolysis in the [p-type InP (Ru)]/HCl-KCl/Pt (Rh) cell. Physical Review Letters. 1981;46(17):1153.
  11. Chen HM, Chen CK, Liu R-S, Zhang L, Zhang J, Wilkinson DP. Nano-architecture and material designs for water splitting photoelectrodes. Chemical Society Reviews. 2012;41(17):5654-71.
  12. Lin Y, Yuan G, Liu R, Zhou S, Sheehan SW, Wang D. Semiconductor nanostructure-based photoelectrochemical water splitting: A brief review. Chemical Physics Letters. 2011;507(4-6):209-15.
  13. Cho IS, Chen Z, Forman AJ, Kim DR, Rao PM, Jaramillo TF, et al. Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano letters. 2011;11(11):4978-84.
  14. Wang G, Yang X, Qian F, Zhang JZ, Li Y. Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. Nano letters. 2010;10(3):1088-92.
  15. Liu Y, Li W, Li J, Yang Y, Chen Q. Enhancing photoelectrochemical performance with a bilayer-structured film consisting of graphene–WO3 nanocrystals and WO3 vertically plate-like arrays as photoanodes. RSC Advances. 2014;4(7):3219-25.
  16. Liu X, Wang F, Wang Q. Nanostructure-based WO3 photoanodes for photoelectrochemical water splitting. Physical Chemistry Chemical Physics. 2012;14(22):7894-911.
  17. Wang H, Bai Y, Zhang H, Zhang Z, Li J, Guo L. CdS quantum dots-sensitized TiO2 nanorod array on transparent conductive glass photoelectrodes. The Journal of Physical Chemistry C. 2010;114(39):16451-5.
  18. Luo J, Ma L, He T, Ng CF, Wang S, Sun H, et al. TiO2/(CdS, CdSe, CdSeS) nanorod heterostructures and photoelectrochemical properties. The Journal of Physical Chemistry C. 2012;116(22):11956-63.
  19. Chen C, Ali G, Yoo SH, Kum JM, Cho SO. Improved conversion efficiency of CdS quantum dot-sensitized TiO2 nanotube-arrays using CuInS2 as a co-sensitizer and an energy barrier layer. Journal of Materials Chemistry. 2011;21(41):16430-5.
  20. Hieu HN, Dung NQ, Kim J, Kim D. Urchin-like nanowire array: a strategy for high-performance ZnO-based electrode utilized in photoelectrochemistry. Nanoscale. 2013;5(12):5530-5538.
  21. Quang ND, Kim D, Hien TT, Kim D, Hong S-K, Kim C. Three-dimensional hierarchical structures of TiO2/CdS branched core-shell nanorods as a high-performance photoelectrochemical cell electrode for hydrogen production. Journal of The Electrochemical Society. 2016;163(6):H434.
  22. Qi X, She G, Liu Y, Mu L, Shi W. Electrochemical synthesis of CdS/ZnO nanotube arrays with excellent photoelectrochemical properties. Chemical Communications. 2012;48(2):242-4.
  23. Tak Y, Hong SJ, Lee JS, Yong K. Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion. Journal of Materials Chemistry. 2009;19(33):5945-51.
  24. Hieu HN, Vuong NM, Kim D. Optimization of CdS/ZnO electrode for use in photoelectrochemical cell. Journal of The Electrochemical Society. 2013;160(11):H852-H7.
  25. Li J, Hoffmann MW, Shen H, Fabrega C, Prades JD, Andreu T, et al. Enhanced photoelectrochemical activity of an excitonic staircase in CdS@ TiO2 and CdS@ anatase@ rutile TiO2 heterostructures. Journal of Materials Chemistry. 2012;22(38):20472-6.
  26. Sun W-T, Yu Y, Pan H-Y, Gao X-F, Chen Q, Peng L-M. CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. Journal of the American Chemical Society. 2008;130(4):1124-5.
  27. Chi C-F, Lee Y-L, Weng H-S. A CdS-modified TiO2 nanocrystalline photoanode for efficient hydrogen generation by visible light. Nanotechnology. 2008;19(12):125704.
  28. Jang JS, Joshi UA, Lee JS. Solvothermal synthesis of CdS nanowires for photocatalytic hydrogen and electricity production. The Journal of Physical Chemistry C. 2007;111(35):13280-7.
  29. Lu Y-R, Yin P-F, Mao J, Ning M-J, Zhou Y-Z, Dong C-K, et al. A stable inverse opal structure of cadmium chalcogenide for efficient water splitting. Journal of Materials Chemistry A. 2015;3(36):18521-7.
  30. Hieu HN, Vuong NM, Jung H, Jang DM, Kim D, Kim H, et al. Optimization of a zinc oxide urchin-like structure for high-performance gas sensing. Journal of Materials Chemistry. 2012;22(3):1127-34.
  31. Liu D, Kamat PV. Photoelectrochemical behavior of thin cadmium selenide and coupled titania/cadmium selenide semiconductor films. The Journal of Physical Chemistry. 1993;97(41):10769-73.
  32. Myung Y, Jang DM, Sung TK, Sohn YJ, Jung GB, Cho YJ, et al. Composition-tuned ZnO− CdSSe core− shell nanowire arrays. ACS nano. 2010;4(7):3789-800.
  33. Luo J, Im J-H, Mayer MT, Schreier M, Nazeeruddin MK, Park N-G, et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science. 2014;345(6204):1593-6.
  34. Hien TT, Kim C, Vuong NM, Quang ND, Kim D, Chinh ND, et al. Enhanced carrier collection efficiency in hierarchical nano-electrode for a high-performance photoelectrochemical cell. Journal of Power Sources. 2016;336:367-75.
  35. Abdi FF, Han L, Smets AH, Zeman M, Dam B, Van De Krol R. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nature communications. 2013;4(1):1-7.
  36. Brillet J, Yum J-H, Cornuz M, Hisatomi T, Solarska R, Augustynski J, et al. Highly efficient water splitting by a dual-absorber tandem cell. Nature Photonics. 2012;6(12):824-8.
  37. Urbain F, Smirnov V, Becker J-P, Rau U, Ziegler J, Kaiser B, et al. Application and modeling of an integrated amorphous silicon tandem based device for solar water splitting. Solar Energy Materials and Solar Cells. 2015;140:275-80.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2021 Array