Photovoltaic characteristics of solar cells based on Ag/SnS thin film fabricated by the radio frequency sputtering method
PDF (Vietnamese)

Keywords

SnS
Ag
phún xạ sóng vô tuyến tần số cao
pin năng lượng mặt trời radio frequency sputtering
solar cell

How to Cite

1.
Trần HT, Nguyễn T Đại, Vũ TKL, Trương TH, Vũ TB, Nguyễn MH. Photovoltaic characteristics of solar cells based on Ag/SnS thin film fabricated by the radio frequency sputtering method. hueuni-jns [Internet]. 2021Sep.30 [cited 2024Apr.25];130(1C):63-7. Available from: https://jos.hueuni.edu.vn/index.php/hujos-ns/article/view/6157

Abstract

We report the characteristics of solar cells manufactured with silver deposited on SnS thin film (Ag/SnS) synthesized with the radio frequency sputtering method. The Ag/SnS film significantly improves the reliable photocurrent density (JSC), photoconversion efficiency, long-term stability due to high transfer carriers of Ag/SnS, suppressed leakage current, and low surface resistance based on sufficient ohmic contact. The Ag/SnS film-based solar cell obtains a power conversion efficiency (h) of 4.83% with a short circuit current density (JSC) of 15.1 mA/cm2 and open-circuit voltage (VOC) of 0.5 V at room temperature. Based on these findings, we propose a potential application of noble metals on the SnS film for enhancing the efficiency and long-term stability of SnS film–based solar cells.

https://doi.org/10.26459/hueunijns.v130i1C.6157
PDF (Vietnamese)

References

  1. Steinmann V, Jaramillo R, Hartman K, Chakraborty R, Brandt RE, Poindexter JR, et al. 3.88% Efficient Tin Sulfide Solar Cells using Congruent Thermal Evaporation. Advanced Materials. 2014;26(44):7488-7492. DOI: https://doi.org/10.1002/adma.201402219
  2. Sinsermsuksakul P, Sun L, Lee SW, Park HH, Kim SB, Yang C, et al. Overcoming efficiency limitations of SnS-Based solar cells. Advanced Energy Materials. 2014;4(15):1400496. DOI: https://doi.org/10.1002/aenm.201400496
  3. Ramakrishna Reddy KT, Koteswara Reddy N, Miles RW. Photovoltaic properties of SnS based solar cells. Solar Energy Materials and Solar Cells. 2006;90(18-19):3041-3046. DOI: https://doi.org/10.1016/j.solmat.2006.06.012
  4. Arepalli VK, Shin Y, Kim J. Influence of working pressure on the structural, optical, and electrical properties of RF-sputtered SnS thin films. Superlattices and Microstructures. 2018;122:253-261. DOI: https://doi.org/10.1016/j.spmi.2018.08.001
  5. Gedi S, Minnam Reddy VR, Reddy Kotte TR, Kim S-H, Jeon C-W. Chemically synthesized Ag-doped SnS films for PV applications. Ceram. Ceramics International. 2016;42(16):19027-19035. DOI: https://doi.org/10.1016/j.ceramint.2016.09.059
  6. Lin S, Li X, Pan H, Chen H, Li X, Li Y, Zhou J. Numerical analysis of SnS homojunction solar cell. Superlattices and Microstructures. 2016;91:375-382. DOI: https://doi.org/10.1016/j.spmi.2016.01.037
  7. Zheng D, Fang H, Long M, Wu F, Wang P, Gong F, Wu X, Ho JC, Liao L, Hu W. High-Performance Near-Infrared Photodetectors Based on p-Type SnX (X = S, Se) Nanowires Grown via Chemical Vapor Deposition. ACS Nano. 2018;12(7):7239-7245. DOI: https://doi.org/10.1021/acsnano.8b03291
  8. Mahdi MS, Ahmed NM, Hmood A, Ibrahim K, Bououdina M. Comprehensive photoresponse study on high performance and flexible π-SnS photodetector with near-infrared response. Materials Science in Semiconductor Processing. 2019;100:270-274. DOI: https://doi.org/10.1016/j.mssp.2019.05.019
  9. Patel M, Kumar M, Kim J, Kim YK. Photocurrent Enhancement by a Rapid Thermal Treatment of Nanodisk-Shaped SnS Photocathodes. The Journal of Physical Chemistry Letters. 2017;8(24):6099-6105. DOI: https://doi.org/10.1021/acs.jpclett.7b02998
  10. Cheng W, Singh N, Elliott W, Lee J, Rassoolkhani A, Jin X, et al. Earth-Abundant Tin Sulfide-Based Photocathodes for Solar Hydrogen Production. Advanced Science. 2017;5(1):1700362. DOI: https://doi.org/10.1002/advs.201700362
  11. Vequizo JJM, Yokoyama M, Ichimura M, Yamakata A. Enhancement of photoelectrochemical activity of SnS thin-film photoelectrodes using TiO2, Nb2O5, and Ta2O5 metal oxide layers. Applied Physics Express. 2016;9(6):067101. DOI: https://doi.org/10.7567/apex.9.067101
  12. Gao W, Wu C, Cao M, Huang J, Wang L, Shen Y. Thickness tunable SnS nanosheets for photoelectrochemical water splitting. Journal of Alloys and Compounds. 2016;688:668-674. DOI: https://doi.org/10.1016/j.jallcom.2016.07.083
  13. Koteeswara Reddy N, Ramesh K, Ganesan R, Ramakrishna Reddy KT, Gunasekhar KR, Gopal ESR. Synthesis and characterisation of co-evaporated tin sulphide thin films. Applied Physics A. 2006;83(1):133-138. DOI: https://doi.org/10.1007/s00339-005-3475-y
  14. Xu J, Yang Y. Study on the performances of SnS heterojunctions by numerical analysis. Energy Conversion and Management. 2014;78:260-265. DOI: https://doi.org/10.1016/j.enconman.2013.10.062
  15. Shockley W, Queisser HJ. Detailed balance limit of efficiency of p‐n junction solar cells. Journal of Applied Physics. 1961;32(3):510-519. DOI: https://doi.org/10.1063/1.1736034
  16. Burton LA, Colombara D, Abellon RD, Grozema FC, Peter LM, Savenije TJ, Dennler G, Walsh A. Synthesis, Characterization, and Electronic Structure of Single-Crystal SnS, Sn2S3, and SnS2. Chemistry of Materials. 2013;25(24):4908-4916. DOI: https://doi.org/10.1021/cm403046m
  17. Devika M, Reddy NK, Ramesh K, Ganesan R, Gunasekhar KR, Gopal ESR, Reddy KTR. Thickness Effect on the Physical Properties of Evaporated SnS Films. Journal of The Electrochemical Society. 2007;154(2):H67. DOI: https://doi.org/10.1149/1.2398816
  18. Ogah OE, Zoppi G, Forbes I, Miles RW. Thin films of tin sulphide for use in thin film solar cell devices. Thin Solid Films. 2009;517(7):2485-2488. DOI: https://doi.org/10.1016/j.tsf.2008.11.023
  19. Ham G, Shin S, Park J, Choi H, Kim J, Lee Y-A, et al. Tuning the electronic structure of tin sulfides grown by atomic layer deposition. ACS Applied Materials & Interfaces. 2013;5(18):8889-8896. DOI: https://doi.org/10.1021/am401127s
  20. Kevin P, Lewis DJ, Raftery J, Azad Malik M, O’Brien P. Thin films of tin(II) sulphide (SnS) by aerosol-assisted chemical vapour deposition (AACVD) using tin(II) dithiocarbamates as single-source precursors. Journal of Crystal Growth. 2015;415:93-99. DOI: https://doi.org/10.1016/j.jcrysgro.2014.07.019
  21. Hartman K, Johnson JL, Bertoni MI, Recht D, Aziz MJ, Scarpulla MA, et al. SnS thin-films by RF sputtering at room temperature. Thin Solid Films. 2011;519(21):7421-7424. DOI: https://doi.org/10.1016/j.tsf.2010.12.186
  22. Burgos A, Cataño F, Marí B, Schrebler R, Gómez H. Pulsed electrodeposition of tin sulfide thin films from dimethyl sulfoxide solutions. Journal of The Electrochemical Society. 2016;163(9):D562-D567. DOI: https://doi.org/10.1149/2.1341609jes
  23. Ichimura M, Takeuchi K, Ono Y, Arai E. Electrochemical deposition of SnS thin films. Thin Solid Films. 2000;361-362:98-101. DOI: https://doi.org/10.1016/s0040-6090(99)00798-1
  24. Tanuševski A, Poelman D. Optical and photoconductive properties of SnS thin films prepared by electron beam evaporation. Solar Energy Materials and Solar Cells. 2003;80(3):297-303. DOI: https://doi.org/10.1016/j.solmat.2003.06.002
  25. Koteswara Reddy N, Ramakrishna Reddy KT. Growth of polycrystalline SnS films by spray pyrolysis. Thin Solid Films. 1998 07;325(1-2):4-6. DOI: https://doi.org/10.1016/s0040-6090(98)00431-3
  26. Henry CH. Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. Journal of Applied Physics. 1980;51(8):4494-4500. DOI: https://doi.org/10.1063/1.328272
  27. Meillaud F, Shah A, Droz C, Vallat-Sauvain E, Miazza C. Efficiency limits for single-junction and tandem solar cells. Solar Energy Materials and Solar Cells. 2006;90(18-19):2952-2959. DOI: https://doi.org/10.1016/j.solmat.2006.06.002
  28. Szeremeta J, Nyk M, Samoc M. Photocurrent enhancement in polythiophene doped with silver nanoparticles. Optical Materials. 2014;37:688-694. DOI: https://doi.org/10.1016/j.optmat.2014.08.014
  29. Son S-I, Shin D, Son YG, Son CS, Kim DR, Park JH, Kim S, Hwang D, Song P. Effect of working pressure on the properties of RF sputtered SnS thin films and photovoltaic performance of SnS-based solar cells. Journal of Alloys and Compounds. 2020;831:154626. DOI: https://doi.org/10.1016/j.jallcom.2020.154626
  30. Devika M, Reddy NK, Patolsky F, Gunasekhar KR. Ohmic contacts to SnS films: Selection and estimation of thermal stability. Journal of Applied Physics. 2008;104(12):124503. DOI: https://doi.org/10.1063/1.3041622
  31. Baby BH, Bharathi Mohan D. Structural, optical and electrical studies of DC-RF magnetron co-sputtered Cu, In & Ag doped SnS thin films for photovoltaic applications. Solar Energy. 2019;194:61-73. DOI: https://doi.org/10.1016/j.solener.2019.10.049
  32. Kafashan H, Balak Z. Preparation and characterization of electrodeposited SnS: In thin films: Effect of in dopant. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2017;184:151-162. DOI: https://doi.org/10.1016/j.saa.2017.04.082.
  33. Kafashan H, Ebrahimi-Kahrizsangi R, Jamali-Sheini F, Yousefi R. Effect of Al doping on the structural and optical properties of electrodeposited SnS thin films. Physica Status Solidi (a). 2016;213(5):1302-1308. DOI: https://doi.org/10.1002/pssa.201532920
  34. Bommireddy PR, Musalikunta CS, Uppala C, Park S-H. Influence of Cu doping on physical properties of sol-gel processed SnS thin films. Materials Science in Semiconductor Processing. 2017;71:139-144. DOI: https://doi.org/10.1016/j.mssp.2017.07.020
  35. Baby BH, Bharathi Mohan D. Characterization studies of heavily doped Ag-SnS thin films prepared by magnetron co-sputtering technique. Materials Today: Proceedings. 2020;26:108-113. DOI: https://doi.org/10.1016/j.matpr.2019.05.436
  36. Manohari AG, Dhanapandian S, Manoharan C, Kumar KS, Mahalingam T. Effect of doping concentration on the properties of bismuth doped tin sulfide thin films prepared by spray pyrolysis. Materials Science in Semiconductor Processing. 2014;17:138-142. DOI: https://doi.org/10.1016/j.mssp.2013.09.012
  37. Patel M, Ray A. Magnetron sputtered Cu doped SnS thin films for improved photoelectrochemical and heterojunction solar cells. RSC Advances. 2014;4(74):39343-39350. DOI: https://doi.org/10.1039/c4ra06219a
  38. Jia HJ, Cheng SY, Lu PM. Effect of Anneal Time on Photoelectric Properties of SnS:Ag Thin Films. Advanced Materials Research. 2010;152-153:752-755. DOI: https://doi.org/10.4028/www.scientific.net/amr.152-153.752
  39. Devika M, Reddy NK, Ramesh K, Gunasekhar KR, Gopal ESR, et al. Low resistive micrometer-thick SnS:Ag films for optoelectronic applications. Journal of The Electrochemical Society. 2006;153(8):G727. DOI: https://doi.org/10.1149/1.2204870
  40. Arepalli VK, Nguyen TD, Kim J. Influence of Ag thickness on the structural, optical, and electrical properties of the SnS/Ag/SnS trilayer films for solar cell application. Current Applied Physics. 2020;20(3):438-444. DOI: https://doi.org/10.1016/j.cap.2020.01.002
  41. Manh Hung N, Nguyen CV, Arepalli VK, Kim J, Duc Chinh N, Nguyen TD, et al. Defect-Induced gas-sensing properties of a flexible SnS sensor under UV illumination at room temperature. Sensors. 2020;20(19):5701. DOI: https://doi.org/10.3390/s20195701
  42. Albers W, Haas C, Vink HJ, Wasscher JD. Investigations on SnS. Journal of Applied Physics. 1961;32(10):2220-2225. DOI: https://doi.org/10.1063/1.1777047
  43. Henry J, Mohanraj K, Kannan S, Barathan S, Sivakumar G. Structural and optical properties of SnS nanoparticles and electron-beam-evaporated SnS thin films. Journal of Experimental Nanoscience. 2013;10(2):78-85. DOI: https://doi.org/10.1080/17458080.2013.788226
  44. Jain P, Arun P. Localized surface plasmon resonance in SnS:Ag nano-composite films. Journal of Applied Physics. 2014;115(20):204512. DOI: https://doi.org/10.1063/1.4880317
  45. Minnam Reddy VR, Gedi S, Park C, Miles RW, Ramakrishna KTR. Development of sulphurized SnS thin film solar cells. Current Applied Physics. 2015;15(5):588-598. DOI: https://doi.org/10.1016/j.cap.2015.01.022
  46. Guo W, Shen Y, Wu M, Ma T. Highly efficient inorganic–organic heterojunction solar cells based on SnS-sensitized spherical TiO2 electrodes. Chemical Communications. 2012;48(49):6133. DOI: https://doi.org/10.1039/c2cc31903a
  47. Ghosh B, Das M, Banerjee P, Das S. Characteristics of metal/p-SnS Schottky barrier with and without post-deposition annealing. Solid State Sciences. 2009;11(2):461-466. DOI: https://doi.org/10.1016/j.solidstatesciences.2008.09.007
  48. Cho JY, Kim S, Nandi R, Jang J, Yun H-S, Enkhbayar E, et al. Achieving over 4% efficiency for SnS/CdS thin-film solar cells by improving the heterojunction interface quality. Journal of Materials Chemistry A. 2020;8(39):20658-20665. DOI: https://doi.org/10.1039/d0ta06937j
  49. Spalatu N, Hiie J, Kaupmees R, Volobujeva O, Krustok J, Oja Acik I, Krunks M. Postdeposition processing of SnS Thin films and solar cells: Prospective strategy to obtain large, sintered, and doped SnS grains by recrystallization in the presence of a metal halide flux. A ACS Applied Materials & Interfaces. 2019;11(19):17539-17554. DOI: https://doi.org/10.1021/acsami.9b03213
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2021 Array