Antioxidant ability of 1-phenyl-3-(2-pyridyl)-2-thiourea: combined experimental/computational studies
PDF (Vietnamese)


chống oxy hóa
hằng số tốc độ
bề mặt thế năng antioxidant
rate constant
potential surface

How to Cite

Đinh QH, Trần Đồng LC. Antioxidant ability of 1-phenyl-3-(2-pyridyl)-2-thiourea: combined experimental/computational studies. hueuni-jns [Internet]. 2021Sep.30 [cited 2021Oct.23];130(1C):85-9. Available from:


2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) (ABTS•+) were used in this study. IC50 values of 1-phenyl-3-(2-pyridyl)-2-thiourea (PPTU) with DPPH and ABTS•+ are 1.3 × 10-3 and 1.1 × 10-3 M. Quantum chemical calculations were performed at the M05-2X/6-311++G(d,p) level to construct a potential surface of the reaction and calculate the rate constants according to hydrogen atom transfer (HAT) and single electron transfer (SET) mechanisms. The reaction between PPTU and HOO free radicals mainly occurs with the HAT mechanism. The portion of product under this mechanism accounts for 99.99% of the total products. N2-H17 is the most favored hydrogen transfer position in the PPTU molecule with the rate constant of 1.44 × 10-1 M-1·s-1.
PDF (Vietnamese)


  1. Wang W, Schuchmann MN, Schuchmann HP, Knolle W, von Sonntag J, von Sonntag C. Radical Cations in the OH-Radical-Induced Oxidation of Thiourea and Tetramethylthiourea in Aqueous Solution. Journal of the American Chemical Society. 1999;121(1):238-45. DOI:
  2. Georgiou CD, Tairis N, Sotiropoulou A. Hydroxyl radical scavengers inhibit lateral-type sclerotial differentiation and growth in phytopathogenic fungi. Mycologia. 2019;92(5):825-34. DOI:
  3. Sudzhaev AR, Rzaeva IA, Nadzhafova RA, Safarov YS, Allakhverdiev MA. Antioxidant properties of some thiourea derivatives. Russian Journal of Applied Chemistry. 2011;84(8):1394-7. DOI:
  4. Ariffin A, Rahman NA, Yehye WA, Alhadi AA, Kadir FA. PASS-assisted design, synthesis and antioxidant evaluation of new butylated hydroxytoluene derivatives. European Journal of Medicinal Chemistry. 2014;87:564-77. DOI:
  5. Prasad AK, Mishra PC. Scavenging of superoxide radical anion and hydroxyl radical by urea, thiourea, selenourea and their derivatives without any catalyst: A theoretical study. Chemical Physics Letters. 2017;684:197-204. DOI:
  6. Firdausiah S, Hasbullah SA, Yamin BM. Synthesis, structurale elucidation and antioxidant study of Ortho-substituted N,N'-bis(benzamidothiocarbonyl)hydrazine derivatives. Journal of Physics: Conference Series. 2018;979:012010. DOI:
  7. Naz S, Zahoor M, Umar MN, Alghamdi S, Sahibzada MUK, UlBari W. Synthesis, characterization, and pharmacological evaluation of thiourea derivatives. Open Chemistry. 2020;18(1):764-77. DOI:
  8. Blois MS. Antioxidant Determinations by the Use of a Stable Free Radical. Nature. 1958;181(4617):1199-1200. DOI:
  9. Miller NJ, Rice-Evans C, Davies MJ, Gopinathan V, Milner A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clinical Science. 1993;84(4):407-412. DOI:
  10. Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine. 1996;20(7):933-956. DOI:
  11. Pannala AS, Chan TS, O'Brien PJ, Rice-Evans CA. Flavonoid B-ring chemistry and antioxidant activity: fast reaction kinetics. Biochemical and Biophysical Research Communications. 2001;282(5):1161-1168. DOI:
  12. Tyrakowska B, Soffers AEMF, Szymusiak H, Boeren S, Boersma MG, Lemańska K, et al. TEAC antioxidant activity of 4-hydroxybenzoates. Free Radical Biology and Medicine. 1999;27(11-12):1427-1436. DOI:
  13. Zhao Y, Schultz NE, Truhlar DG. Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. Journal of Chemical Theory and Computation. 2006;2(2):364-382. DOI:
  14. Masek A, Chrzescijanska E, Latos M, Zaborski M, Podsędek A. Antioxidant and Antiradical Properties of Green Tea Extract Compounds. International Journal of Electrochemical Science. 2017;12:6600-6610. DOI:
  15. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine. 1999;26(9-10):1231-1237. DOI:
  16. Mayer JM, Hrovat DA, Thomas JL, Borden WT. Proton-Coupled Electron Transfer versus Hydrogen Atom Transfer in Benzyl/Toluene, Methoxyl/Metanol, and Phenoxyl/Phenol Self-Exchange Reactions. Journal of the American Chemical Society. 2002;124(37):11142-11147. DOI:
  17. Urbaniak A, Szeląg M, Molski M. Theoretical investigation of stereochemistry and solvent influence on antioxidant activity of ferulic acid. Computational and Theoretical Chemistry. 2013;1012:33-40. DOI:
  18. Musialik M, Litwinienko G. Scavenging of dpph• Radicals by Vitamin E Is Accelerated by Its Partial Ionization: The Role of Sequential Proton Loss Electron Transfer. Organic Letters. 2005 09 24;7(22):4951-4954. DOI:
  19. Thong NM, Quang DT, Bui TNH, Dao DQ, Nam PC. Antioxidant properties of xanthones extracted from the pericarp of Garcinia mangostana (Mangosteen): A theoretical study. Chemical Physics Letters. 2015 04;625:30-35. DOI:
  20. Tabrizi L, Dao DQ, Vu TA. Experimental and theoretical evaluation on the antioxidant activity of a copper(ii) complex based on lidocaine and ibuprofen amide-phenanthroline agents. RSC Advances. 2019;9(6):3320-3335. DOI:
  21. Thong NM, Vo VQ, Huyen TL, Bay MV, Tuan D, Nam PC. Theoretical Study for Exploring the Diglycoside Substituent Effect on the Antioxidative Capability of Isorhamnetin Extracted from Anoectochilus roxburghii. ACS Omega. 2019;4(12):14996-15003. DOI:
  22. Klein E, Lukeš V, Ilčin M. DFT/B3LYP study of tocopherols and chromans antioxidant action energetics. Chemical Physics. 2007;336(1):51-57. DOI:
  23. Rimarčík J, Lukeš V, Klein E, Ilčin M. Study of the solvent effect on the enthalpies of homolytic and heterolytic N-H bond cleavage in p-phenylenediamine and tetracyano-p-phenylenediamine. Journal of Molecular Structure: Theochem. 2010;952(1-3):25-30. DOI:
  24. Dzib E, Cabellos JL, Ortíz-Chi F, Pan S, Galano A, Merino G. Eyringpy: A program for computing rate constants in the gas phase and in solution. International Journal of Quantum Chemistry. 2018;119(2):e25686. DOI:
  25. Marcus RA. Chemical and Electrochemical Electron-Transfer Theory. Annual Review of Physical Chemistry. 1964;15(1):155-196. DOI:
  26. Marcus RA. Electron transfer reactions in chemistry. Theory and experiment. Reviews of Modern Physics. 1993;65(3):599-610. DOI:
  27. Nelsen SF, Weaver MN, Luo Y, Pladziewicz JR, Ausman LK, Jentzsch TL, et al. Estimation of electronic coupling for intermolecular electron transfer from cross-reaction data. The Journal of Physical Chemistry A. 2006;110(41):11665-11676. DOI:
  28. Galano A, Alvarez-Idaboy JR. A computational methodology for accurate predictions of rate constants in solution: application to the assessment of primary antioxidant activity. Journal of Computational Chemistry. 2013;34(28):2430-2445. DOI:
  29. Wigner E. On the Quantum Correction For Thermodynamic Equilibrium. Physical Review. 1932;40(5):749-759. DOI:
  30. Eckart C. The Penetration of a Potential Barrier by Electrons. Physical Review. 1930;35(11):1303-1309. DOI:
  31. Alberto ME, Russo N, Grand A, Galano A. A physicochemical examination of the free radical scavenging activity of Trolox: mechanism, kinetics and influence of the environment. Physical Chemistry Chemical Physics. 2013;15(13):4642. DOI:
  32. Vélez E, Quijano J, Notario R, Pabón E, Murillo J, Leal J, et al. A computational study of stereospecifity in the thermal elimination reaction of menthyl benzoate in the gas phase. Journal of Physical Organic Chemistry. 2009;22(10):971-977. DOI:
  33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09. 2009; Gaussian, Inc., Wallingford CT, USA.
  34. Wright JS, Johnson ER, DiLabio GA. Predicting the Activity of Phenolic Antioxidants: Theoretical Method, Analysis of Substituent Effects, and Application to Major Families of Antioxidants. Journal of the American Chemical Society. 2001;123(6):1173-1183. DOI:
  35. Serobatse KRN, Kabanda MM. An appraisal of the hydrogen atom transfer mechanism for the reaction between thiourea derivatives and •OH radical: A case-study of dimethylthiourea and diethylthiourea. Computational and Theoretical Chemistry. 2017;1101:83-95. DOI:
  36. Ingold KU, Pratt DA. Advances in radical-trapping antioxidant chemistry in the 21st century: a kinetics and mechanisms perspective. Chemical Reviews. 2014;114(18):9022-9046. DOI:
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2021 Array