Comparison of dispersion characteristics of hollow-core photonic crystal fibers filled with aromatic compounds
PDF

Keywords

photonic crystal fibers (PCFs)
aromatic compounds
benzene
nitrobenzene
flat dispersion

How to Cite

1.
Nguyen TT, Dang VT, Hoang TD, Le TBT, Le BX, Tran QV, Vo TMN, Chu VL. Comparison of dispersion characteristics of hollow-core photonic crystal fibers filled with aromatic compounds. hueuni-jns [Internet]. 2021Dec.31 [cited 2024Apr.26];130(1D):65-73. Available from: https://jos.hueuni.edu.vn/index.php/hujos-ns/article/view/6302

Abstract

In this paper, hollow-core photonic crystal fibers (PCFs) infiltrated with benzene and nitrobenzene are designed and investigated. Their dispersion characteristics are numerically simulated. The results show that using the aromatic-compounds-filled hollow core of PCFs makes dispersion curves flat. In addition, the dispersion curves approach the zero-dispersion line closer than previously published dispersion curves of PCFs with toluene, thus significantly improving the supercontinuum generation to create the ultra-flat spectrum expansion.

https://doi.org/10.26459/hueunijns.v130i1D.6302
PDF

References

  1. Knight JC, Birks TA, Russell PSJ, and Atkin DM. All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters. 1996;21(19):1547-9. DOI: https://doi.org/10.1364/OL.21.001547
  2. Birks TA, Knight JC, and Russell PSJ. Endlessly single-mode photonic crystal fiber. Optics Letters. 1997;22(13):961-3. DOI: https://doi.org/10.1364/OL.22.000961
  3. Cregan RF, Mangan BJ, Knight JC, Birks TA, Russell PSJ, Roberts PJ, et al. Single-Mode Photonic Band Gap Guidance of Light in Air. Science. 1999;285(5433):1537-9. DOI: https://doi.org/10.1126/science.285.5433.1537
  4. Philip Russell. Photonic Crystal Fibers. Science. 2003;299(5605):358-362. DOI: https://doi.org/10.1126/science.1079280
  5. Buczynski R, Szarniak P, Pysz D, Kujawa I, Stepien R, Szoplik T. Properties of a double-core photonic crystal fiber with a square lattice. Proceedings of the SPIE. 2004;5576:81-7. DOI: https://doi.org/10.1117/12.581621
  6. Nascimento I, Chesini G, Sousa M, Osório J, Baptista J, Cordeiro CM, et al. Application of a photonic crystal fiber LPG for vibration monitoring. Fifth European Workshop on Optical Fibre Sensors. 2013;8794. DOI: https://doi.org/10.1117/12.2026723
  7. Barczak K. Application of Photonic Crystal Fiber in Optical Fiber Current Sensors. Acta Physica Polonica A. 2012;122(5):793-2. DOI: https://doi.org/10.12693/APhysPolA.122.793
  8. Pinto AMR, Lopez-Amo M. Photonic Crystal Fibers for Sensing Applications. Journal of Sensors 2012;2012: 598178. DOI: https://doi.org/10.1155/2012/598178
  9. Knight JC, Birks TA, Russell PSJ, de Sandro JP. Properties of photonic crystal fiber and the effective index model. Journal of the Optical Society of America A. 1998;15(3):748-52. DOI: https://doi.org/10.1364/JOSAA.15.000748
  10. E. Seraji F, Asghari F. Determination of Refractive Index and Confinement Losses in Photonic Crystal Fibers Using FDFD Method: A Comparative Analysis. International Journal of Optics and Photonics. 2009;3(1):3-7.
  11. Martelli C, Canning J, Kristensen M, Groothoff N. Refractive Index Measurement within a Photonic Crystal Fibre Based on Short Wavelength Diffraction. Sensors 2007;7(11):2492-6. DOI: https://doi.org/10.3390/s7112492
  12. Ferrando A, Silvestre E, Miret JJ, Andrés P, Andrés MV. Guiding Mechanism in Photonic Crystal Fibers. Optics and Photonics News. 2000;11(12):32-3. DOI: https://doi.org/10.1364/OPN.11.12.000032
  13. Mortensen NA. Effective area of photonic crystal fibers. Optics Express. 2002;10(7):341-8. DOI: https://doi.org/10.1364/OE.10.000341
  14. Nagaraju N, Eliyaz M, Ksihore KLN. Dispersion and Effective Area of Air Hole Containing Photonic Crystal Fibres. IOSR Journal of Electronics and Communication Engineering. 2017;12(13):9-12. DOI: https://doi.org/10.9790/2834-1203040912
  15. Reeves WH, Knight JC, Russell PSJ, Roberts PJ. Demonstration of ultra-flattened dispersion in photonic crystal fibers. Optics Express. 2002;10(14):609-13. DOI: https://doi.org/10.1364/OE.10.000609
  16. Dabas B, Sinha RK. Dispersion characteristic of hexagonal and square lattice chalcogenide As2Se3 glass photonic crystal fiber. Optics Communications. 2010;283(7):1331-7. DOI: https://doi.org/10.1016/j.optcom.2009.11.091
  17. Karasawa N. Dispersion properties of liquid-core photonic crystal fibers. Applied Optics. 2012;51(21):5259-65. DOI: https://doi.org/10.1364/AO.51.005259
  18. Olyaee S, Taghipour F. A new design of photonic crystal fiber with ultra-flattened dispersion to simultaneously minimize the dispersion and confinement loss. Journal of Physics: Conference Series. 2011;276:012080. DOI: https://doi.org/10.1088/1742-6596/276/1/012080
  19. Pniewski J, Stefaniuk T, Van HL, Long VC, Van LC, Kasztelanic R, et al. Dispersion engineering in nonlinear soft glass photonic crystal fibers infiltrated with liquids. Applied Optics. 2016;55(19):5033-40. DOI: https://doi.org/10.1364/AO.55.005033
  20. Xuan KD, Van LC, Long VC, Dinh QH, Van Mai L, Trippenbach M, et al. Influence of temperature on dispersion properties of photonic crystal fibers infiltrated with water. Optical and Quantum Electronics. 2017;49(2):87. DOI: https://doi.org/10.1007/s11082-017-0929-3
  21. White TP, McPhedran RC, de Sterke CM, Botten LC, Steel MJ. Confinement losses in microstructured optical fibers. Optics Letters. 2001;26(21):1660-2. DOI: https://doi.org/10.1364/OL.26.001660
  22. Tajima K, Jian Z, Nakajima K, Sato K. Ultralow loss and long length photonic crystal fiber. Journal of Lightwave Technology. 2004;22(1):7-10. DOI: https://doi.org/10.1109/JLT.2003.822143
  23. Chen D, Shen L. Ultrahigh Birefringent Photonic Crystal Fiber with Ultralow Confinement Loss. IEEE Photonics Technology Letters. 2007;19(4):185-7. DOI: https://doi.org/10.1109/LPT.2006.890040
  24. Koohi-Kamalia F, Ebnali-Heidarib M, Moravvej-Farshic MK. Designing a dual-core photonic crystal fiber coupler by means of microfluidic infiltration. International Journal of Optics and Photonics. 2012;6(2):83-96.
  25. Thenmozhi H, Mani Rajan M, Devika V, Vigneswaran D, Ayyanar N. D-glucose sensor using photonic crystal fiber. Optik. 2017;145:489-94. DOI: https://doi.org/10.1016/j.ijleo.2017.08.039
  26. Ebnali-Heidari M, Dehghan F, Saghaei H, Koohi-Kamali F, Moravvej-Farshi MK. Dispersion engineering of photonic crystal fibers by means of fluidic infiltration. Journal of Modern Optics. 2012;59(16):1384-90. DOI: https://doi.org/10.1080/09500340.2012.715690
  27. Liu S, Gao W, Li H, Dong Y, Zhang H. Liquid-filled simplified hollow-core photonic crystal fiber. Optics & Laser Technology. 2014;64:140-4. DOI: https://doi.org/10.1016/j.optlastec.2014.05.018
  28. Van LC, Anuszkiewicz A, Ramaniuk A, Kasztelanic R, Xuan KD, Long VC, et al. Supercontinuum generation in photonic crystal fibres with core filled with toluene. Journal of Optics. 2017;19(12):125604. DOI: https://doi.org/10.1088/2040-8986/aa96bc
  29. Bozolan A, de Matos CJS, Cordeiro CMB, dos Santos EM, Travers J. Supercontinuum generation in a water-core photonic crystal fiber. Opt Express. 2008;16(13):9671-6. DOI: https://doi.org/10.1364/OE.16.009671
  30. Guo Z, Yuan J, Yu C, Sang X, Wang K, Yan B, et al. Highly Coherent Supercontinuum Generation in the Normal Dispersion Liquid-Core Photonic Crystal Fiber. Progress In Electromagnetics Research M. 2016;48:67-76. DOI: https://doi.org/10.2528/PIERM15122302
  31. Wang C-c, Li W-m, Li N, Wang W-q. Numerical simulation of coherent visible-to-near-infrared supercontinuum generation in the CHCl3-filled photonic crystal fiber with 1.06 μm pump pulses. Optics & Laser Technology. 2017;88:215-21. DOI: https://doi.org/10.1016/j.optlastec.2016.09.020
  32. Ho PP, Alfano RR. Optical Kerr effect in liquids. Physical Review A. 1979;20(5):2170-87. DOI: https://doi.org/10.1103/PhysRevA.20.2170
  33. Couris S, Renard M, Faucher O, Lavorel B, Chaux R, Koudoumas E, et al. An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques. Chemical Physics Letters. 2003;369(3-4):318-24. DOI: https://doi.org/10.1016/S0009-2614(02)02021-3
  34. Lim H, Wise FW. Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber. Optics Express. 2004;12(10):2231-5. DOI: https://doi.org/10.1364/OPEX.12.002231
  35. Engelbrecht CJ, Johnston RS, Seibel EJ, Helmchen F. Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo. Optics Express. 2008;16(8):5556-64. DOI: https://doi.org/10.1364/OE.16.005556
  36. Wan B, Zhu L, Ma X, Li T, Zhang J. Characteristic Analysis and Structural Design of Hollow-Core Photonic Crystal Fibers with Band Gap Cladding Structures. Sensors. 2021;21(1):284. DOI: https://doi.org/10.3390/s21010284
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2021 Array