Model predictive direct power control of three-level T-type inverter-fed doubly-fed induction generator for wind energy system
PDF

Keywords

doubly-fed induction generator
DFIG
three-level T-type inverter
finite control set model predictive control
FCS-MPC
direct power control
capacitor voltage balancing
wind energy system

How to Cite

1.
Ngo VQB, Nguyen KQ, Nguyen TH, Hoang DL, Dao QC. Model predictive direct power control of three-level T-type inverter-fed doubly-fed induction generator for wind energy system. hueuni-jns [Internet]. 2021Dec.31 [cited 2024Mar.28];130(1D):5-14. Available from: https://jos.hueuni.edu.vn/index.php/hujos-ns/article/view/6316

Abstract

The paper proposes a simplified direct power control strategy of a doubly-fed induction generator fed by a three-level T-type inverter based on finite control set model predictive control. A mathematical model based on grid voltage orientation was employed to determine the predictive values of the stator flux, rotor current, and capacitor voltages for all feasible rotor-side inverter output voltages. The active and reactive powers were calculated by using the grid voltage and the rotor current. A cost function was applied to track the active and reactive powers, maintain the balance of capacitor voltages, and reduce the common-mode voltage. The best switching control input was chosen by minimizing the cost function and implemented to the inverter. Different operating conditions of wind turbine systems were studied with Matlab/Simulink environment. The simulation results validate the improved performance of the proposed method compared with the classical control in terms of transient response and steady-state conditions.

https://doi.org/10.26459/hueunijns.v130i1D.6316
PDF

References

  1. Ma K, Tutelea L, Boldea I, Ionel DM, Blaabjerg F. Power electronic drives, controls, and electric generators for large wind turbines-an overview. Electric Power Compon Syst. 2015;43(12):1406-1421. DOI: https://doi.org/10.1080/15325008.2015.1037470
  2. Blaabjerg F, Liserre M, Ma K. Power electronics converters for wind turbine systems. IEEE Transactions on Industry Applications. 2012;48(2):708-719. DOI: https://doi.org/10.1109/TIA.2011.2181290
  3. Abad G, López J, Rodríguez MA, Marroyo L, Iwanski G. Doubly Fed Induction Machine. John Wiley & Sons, Inc;2011. DOI: http://dx.doi.org/10.1002/9781118104965
  4. Schweizer M, Kolar JW. Design and implementation of a highly efficient three-level T-type converter for low-voltage applications. IEEE Trans Power Electron. 2013;28(2):899-907. DOI: https://doi.org/10.1109/TPEL.2012.2203151
  5. Ngo VQB, Nguyen MK, Tran TT, Lim YC, Choi JH. A simplified model predictive control for T-type inverter with output LC filter. Energies. 2019; 12(1):31. DOI: https://doi.org/10.3390/en12010031
  6. Hopfensperger B, Atkinson DJ, Lakin RA. Stator-flux oriented control of a doubly-fed induction machine with and without position encoder. IEE Proceedings - Electric Power Applications. 2000;147(4):241-250. DOI: https://doi.org/10.1049/ip-epa:20000442
  7. Muller S, Deicke M, Doncker RWD. Doubly fed induction generator systems for wind turbines. IEEE Industry Applications Magazine. 2002;8(3):26-33. DOI: https://doi.org/10.1109/2943.999610
  8. Yang B, Jiang L, Wang L, Yao W, Wu Q. Nonlinear maximum power point tracking control and modal analysis of DFIG based wind turbine. International Journal of Electrical Power & Energy Systems. 2016;74:429-436. DOI: https://doi.org/10.1016/j.ijepes.2015.07.036
  9. Prasad RM, Mulla MA. Rotor Position-Sensorless Algorithms for Direct Power Control of Rotor-Tied DFIG. IEEE Transactions on Power Electronics. 2021;36(6):6213-6217. DOI: https://doi.org/10.1109/TPEL.2020.3040705
  10. Hu J, Yuan X. VSC-based direct torque and reactive power control of doubly-fed induction generator. Renewable Energy. 2012;40:13-23. DOI: https://doi.org/10.1016/j.renene.2011.08.023
  11. Xiong L, Wang J, Mi X, Khan MW. Fractional order sliding mode based direct power control of grid-connected DFIG. IEEE Transactions on Power Systems. 2018;33(3):3087-3096. DOI: https://doi.org/10.1109/TPWRS.2017.2761815
  12. Hu J, Li Y, Zhu J. Multi-objective model predictive control of doubly-fed induction generators for wind energy conversion. IET Generation Transmission Distribution. 2019;13(1):21-29. DOI: https://doi.org/10.1049/iet-gtd.2018.5172
  13. Kou P, Liang D, Li J, Gao L, Ze Q. Finite-Control-Set Model Predictive Control for DFIG Wind Turbines. IEEE Transactions on Automation Science and Engineering. 2018;15(3):1004-13. DOI: https://doi.org/10.1109/TASE.2017.2682559
  14. Rodriguez J, Kazmierkowski MP, Espinoza JR, Zanchetta P, Abu-Rub H, Young HA, et al. State of the art of finite control set model predictive control in power electronics. IEEE Transactions on Industrial Informatics. 2013;9(2):1003-1016. DOI: https://doi.org/10.1109/TII.2012.2221469
  15. Abdelrahem M, Kennel R. Efficient direct model predictive control for doubly-fed induction generators. Electric Power Components and Systems. 2017;45(5):574-87. DOI: https://doi.org/10.1080/15325008.2017.1289572
  16. Rodriguez J, Cortes P. Predictive control of power converters and electrical drives. John Wiley & Sons, Inc;2012. DOI: https://doi.org/10.1002/9781119941446
  17. Kouro S, Cortes P, Vargas R, Ammann U, Rodriguez J. Model predictive control-a simple and powerful method to control power converters. IEEE Transactions on Industrial Electronics. 2009;56(6):1826-38. DOI: https://doi.org/10.1109/TIE.2008.2008349
  18. Rafiee Z, Heydari R, Rafiee M, Aghamohammadi MR, Rodriguez J, Blaabjerg F, editors. Adaptive Model Predictive Control of DFIG-based Wind Farm: A Model-Free Control Approach. 2020 IEEE 21st Workshop on Control and Modeling for Power Electronics (COMPEL); 2020 9-12 Nov. 2020. DOI: https://doi.org/10.1109/COMPEL49091.2020.9265865
  19. Mossa MA, Do TD, Al-Sumaiti AS, Quynh NV, Diab AAZ. Effective Model Predictive Voltage Control for a Sensorless Doubly Fed Induction Generator. IEEE Canadian Journal of Electrical and Computer Engineering. 2021;44(1):50-64. DOI: https://doi.org/10.1109/ICJECE.2020.3018495
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2021 Array