Antioxidant ability of 1-phenyl-3-(2-pyridyl)-2-thiourea: combined experimental/computational studies
PDF (Vietnamese)

Keywords

antioxidant
rate constant
potential surface PPTU
chống oxy hóa
HAT
hằng số tốc độ
bề mặt thế năng

How to Cite

1.
Đinh QH, Trần Đồng LC. Antioxidant ability of 1-phenyl-3-(2-pyridyl)-2-thiourea: combined experimental/computational studies. hueuni-jns [Internet]. 2021Sep.30 [cited 2024Dec.22];130(1C):85-9. Available from: https://jos.hueuni.edu.vn/index.php/hujos-ns/article/view/6250

Abstract

2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) (ABTS•+) were used in this study. IC50 values of 1-phenyl-3-(2-pyridyl)-2-thiourea (PPTU) with DPPH and ABTS•+ are 1.3 × 10-3 and 1.1 × 10-3 M. Quantum chemical calculations were performed at the M05-2X/6-311++G(d,p) level to construct a potential surface of the reaction and calculate the rate constants according to hydrogen atom transfer (HAT) and single electron transfer (SET) mechanisms. The reaction between PPTU and HOO free radicals mainly occurs with the HAT mechanism. The portion of product under this mechanism accounts for 99.99% of the total products. N2-H17 is the most favored hydrogen transfer position in the PPTU molecule with the rate constant of 1.44 × 10-1 M-1·s-1.

https://doi.org/10.26459/hueunijns.v130i1C.6250
PDF (Vietnamese)

References

  1. Wang W, Schuchmann MN, Schuchmann HP, Knolle W, von Sonntag J, von Sonntag C. Radical Cations in the OH-Radical-Induced Oxidation of Thiourea and Tetramethylthiourea in Aqueous Solution. Journal of the American Chemical Society. 1999;121(1):238-45. DOI: https://doi.org/10.1021/ja983275b
  2. Georgiou CD, Tairis N, Sotiropoulou A. Hydroxyl radical scavengers inhibit lateral-type sclerotial differentiation and growth in phytopathogenic fungi. Mycologia. 2019;92(5):825-34. DOI: https://doi.org/10.1080/00275514.2000.12061226
  3. Sudzhaev AR, Rzaeva IA, Nadzhafova RA, Safarov YS, Allakhverdiev MA. Antioxidant properties of some thiourea derivatives. Russian Journal of Applied Chemistry. 2011;84(8):1394-7. DOI: https://doi.org/10.1134/S1070427211080167
  4. Ariffin A, Rahman NA, Yehye WA, Alhadi AA, Kadir FA. PASS-assisted design, synthesis and antioxidant evaluation of new butylated hydroxytoluene derivatives. European Journal of Medicinal Chemistry. 2014;87:564-77. DOI: https://doi.org/10.1016/j.ejmech.2014.10.001
  5. Prasad AK, Mishra PC. Scavenging of superoxide radical anion and hydroxyl radical by urea, thiourea, selenourea and their derivatives without any catalyst: A theoretical study. Chemical Physics Letters. 2017;684:197-204. DOI: https://doi.org/10.1016/j.cplett.2017.06.040
  6. Firdausiah S, Hasbullah SA, Yamin BM. Synthesis, structurale elucidation and antioxidant study of Ortho-substituted N,N'-bis(benzamidothiocarbonyl)hydrazine derivatives. Journal of Physics: Conference Series. 2018;979:012010. DOI: https://doi.org/10.1088/1742-6596/979/1/012010
  7. Naz S, Zahoor M, Umar MN, Alghamdi S, Sahibzada MUK, UlBari W. Synthesis, characterization, and pharmacological evaluation of thiourea derivatives. Open Chemistry. 2020;18(1):764-77. DOI: https://doi.org/10.1515/chem-2020-0139
  8. Blois MS. Antioxidant Determinations by the Use of a Stable Free Radical. Nature. 1958;181(4617):1199-1200. DOI: https://doi.org/10.1038/1811199a0
  9. Miller NJ, Rice-Evans C, Davies MJ, Gopinathan V, Milner A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clinical Science. 1993;84(4):407-412. DOI: https://doi.org/10.1042/cs0840407
  10. Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine. 1996;20(7):933-956. DOI: https://doi.org/10.1016/0891-5849(95)02227-9
  11. Pannala AS, Chan TS, O'Brien PJ, Rice-Evans CA. Flavonoid B-ring chemistry and antioxidant activity: fast reaction kinetics. Biochemical and Biophysical Research Communications. 2001;282(5):1161-1168. DOI: https://doi.org/10.1006/bbrc.2001.4705
  12. Tyrakowska B, Soffers AEMF, Szymusiak H, Boeren S, Boersma MG, Lemańska K, et al. TEAC antioxidant activity of 4-hydroxybenzoates. Free Radical Biology and Medicine. 1999;27(11-12):1427-1436. DOI: https://doi.org/10.1016/S0891-5849(99)00192-6
  13. Zhao Y, Schultz NE, Truhlar DG. Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. Journal of Chemical Theory and Computation. 2006;2(2):364-382. DOI: https://doi.org/10.1021/ct0502763
  14. Masek A, Chrzescijanska E, Latos M, Zaborski M, Podsędek A. Antioxidant and Antiradical Properties of Green Tea Extract Compounds. International Journal of Electrochemical Science. 2017;12:6600-6610. DOI: https://doi.org/10.20964/2017.07.06
  15. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine. 1999;26(9-10):1231-1237. DOI: https://doi.org/10.1016/S0891-5849(98)00315-3
  16. Mayer JM, Hrovat DA, Thomas JL, Borden WT. Proton-Coupled Electron Transfer versus Hydrogen Atom Transfer in Benzyl/Toluene, Methoxyl/Metanol, and Phenoxyl/Phenol Self-Exchange Reactions. Journal of the American Chemical Society. 2002;124(37):11142-11147. DOI: https://doi.org/10.1021/ja012732c
  17. Urbaniak A, Szeląg M, Molski M. Theoretical investigation of stereochemistry and solvent influence on antioxidant activity of ferulic acid. Computational and Theoretical Chemistry. 2013;1012:33-40. DOI: https://doi.org/10.1016/j.comptc.2013.02.018
  18. Musialik M, Litwinienko G. Scavenging of dpph• Radicals by Vitamin E Is Accelerated by Its Partial Ionization: The Role of Sequential Proton Loss Electron Transfer. Organic Letters. 2005 09 24;7(22):4951-4954. DOI: https://doi.org/10.1021/ol051962j
  19. Thong NM, Quang DT, Bui TNH, Dao DQ, Nam PC. Antioxidant properties of xanthones extracted from the pericarp of Garcinia mangostana (Mangosteen): A theoretical study. Chemical Physics Letters. 2015 04;625:30-35. DOI: https://doi.org/10.1016/j.cplett.2015.02.033
  20. Tabrizi L, Dao DQ, Vu TA. Experimental and theoretical evaluation on the antioxidant activity of a copper(ii) complex based on lidocaine and ibuprofen amide-phenanthroline agents. RSC Advances. 2019;9(6):3320-3335. DOI: https://doi.org/10.1039/C8RA09763A
  21. Thong NM, Vo VQ, Huyen TL, Bay MV, Tuan D, Nam PC. Theoretical Study for Exploring the Diglycoside Substituent Effect on the Antioxidative Capability of Isorhamnetin Extracted from Anoectochilus roxburghii. ACS Omega. 2019;4(12):14996-15003. DOI: https://doi.org/10.1021/acsomega.9b01780
  22. Klein E, Lukeš V, Ilčin M. DFT/B3LYP study of tocopherols and chromans antioxidant action energetics. Chemical Physics. 2007;336(1):51-57. DOI: https://doi.org/10.1016/j.chemphys.2007.05.007
  23. Rimarčík J, Lukeš V, Klein E, Ilčin M. Study of the solvent effect on the enthalpies of homolytic and heterolytic N-H bond cleavage in p-phenylenediamine and tetracyano-p-phenylenediamine. Journal of Molecular Structure: Theochem. 2010;952(1-3):25-30. DOI: https://doi.org/10.1016/j.theochem.2010.04.002
  24. Dzib E, Cabellos JL, Ortíz-Chi F, Pan S, Galano A, Merino G. Eyringpy: A program for computing rate constants in the gas phase and in solution. International Journal of Quantum Chemistry. 2018;119(2):e25686. DOI: https://doi.org/10.1002/qua.25686
  25. Marcus RA. Chemical and Electrochemical Electron-Transfer Theory. Annual Review of Physical Chemistry. 1964;15(1):155-196. DOI: https://doi.org/10.1146/annurev.pc.15.100164.001103
  26. Marcus RA. Electron transfer reactions in chemistry. Theory and experiment. Reviews of Modern Physics. 1993;65(3):599-610. DOI: https://doi.org/10.1103/RevModPhys.65.599
  27. Nelsen SF, Weaver MN, Luo Y, Pladziewicz JR, Ausman LK, Jentzsch TL, et al. Estimation of electronic coupling for intermolecular electron transfer from cross-reaction data. The Journal of Physical Chemistry A. 2006;110(41):11665-11676. DOI: https://doi.org/10.1021/jp064406v
  28. Galano A, Alvarez-Idaboy JR. A computational methodology for accurate predictions of rate constants in solution: application to the assessment of primary antioxidant activity. Journal of Computational Chemistry. 2013;34(28):2430-2445. DOI: https://doi.org/10.1002/jcc.23409
  29. Wigner E. On the Quantum Correction For Thermodynamic Equilibrium. Physical Review. 1932;40(5):749-759. DOI: https://doi.org/10.1103/PhysRev.40.749
  30. Eckart C. The Penetration of a Potential Barrier by Electrons. Physical Review. 1930;35(11):1303-1309. DOI: https://doi.org/10.1103/PhysRev.35.1303
  31. Alberto ME, Russo N, Grand A, Galano A. A physicochemical examination of the free radical scavenging activity of Trolox: mechanism, kinetics and influence of the environment. Physical Chemistry Chemical Physics. 2013;15(13):4642. DOI: https://doi.org/10.1039/c3cp43319f
  32. Vélez E, Quijano J, Notario R, Pabón E, Murillo J, Leal J, et al. A computational study of stereospecifity in the thermal elimination reaction of menthyl benzoate in the gas phase. Journal of Physical Organic Chemistry. 2009;22(10):971-977. DOI: https://doi.org/10.1002/poc.1547
  33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09. 2009; Gaussian, Inc., Wallingford CT, USA.
  34. Wright JS, Johnson ER, DiLabio GA. Predicting the Activity of Phenolic Antioxidants: Theoretical Method, Analysis of Substituent Effects, and Application to Major Families of Antioxidants. Journal of the American Chemical Society. 2001;123(6):1173-1183. DOI: https://doi.org/10.1021/ja002455u
  35. Serobatse KRN, Kabanda MM. An appraisal of the hydrogen atom transfer mechanism for the reaction between thiourea derivatives and •OH radical: A case-study of dimethylthiourea and diethylthiourea. Computational and Theoretical Chemistry. 2017;1101:83-95. DOI: https://doi.org/10.1016/j.comptc.2016.12.027
  36. Ingold KU, Pratt DA. Advances in radical-trapping antioxidant chemistry in the 21st century: a kinetics and mechanisms perspective. Chemical Reviews. 2014;114(18):9022-9046. DOI: https://doi.org/10.1021/cr500226n
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2021 Array