PHÁT TRIỂN ĐIỆN CỰC BIẾN TÍNH NANOCOMPOSIT Fe3O4@Au CẤU TRÚC XỐP VÀ ỨNG DỤNG XÁC ĐỊNH CHLORAMPHENICOL BẰNG PHƯƠNG PHÁP ĐIỆN HÓA
PDF

Từ khóa

Fe3O4@Au
Porous microstructures
Electrochemical method
Chloramphenicol

Cách trích dẫn

1.
Hồ VMH, Đặng XT, Lê TH, Nguyễn Đức VQ, Bui THD, Nguyễn TTU, Võ TK, Nguyễn VC, Nguyễn NN. PHÁT TRIỂN ĐIỆN CỰC BIẾN TÍNH NANOCOMPOSIT Fe3O4@Au CẤU TRÚC XỐP VÀ ỨNG DỤNG XÁC ĐỊNH CHLORAMPHENICOL BẰNG PHƯƠNG PHÁP ĐIỆN HÓA. hueuni-jns [Internet]. 30 Tháng Chín 2023 [cited 18 Tháng Năm 2024];132(1C):5-14. Available at: https://jos.hueuni.edu.vn/index.php/hujos-ns/article/view/7054

Tóm tắt

Bài báo này trình bày cách tổng hợp vật liệu Fe3O4 cấu trúc xốp bằng phương pháp thuỷ nhiệt. Kết quả cho thấy vật liệu Fe3O4 hình thành từ các hạt nano sơ cấp dạng tấm, có cấu trúc xốp và diện tích bề mặt riêng lớn. Hơn nữa, bề mặt vật liệu Fe3O4 được pha tạp một cách đồng đều với các hạt nano Au với kích thước trung bình khoảng 10 nm, tạo thành vật liệu nanocomposite Fe3O4@Au cấu trúc xốp. Vật liệu Fe3O4@Au được sử dụng để phủ lên bề mặt điện cực than thuỷ tinh (Fe3O4@Au-GCE) để làm cảm biến điện hoá trong xác định chloramphenicol. Điện cực này có khả năng xác định chloramphenicol với khoảng tuyến tính 2–10 μM và giới hạn phát hiện 0,17 μM.

https://doi.org/10.26459/hueunijns.v132i1C.7054
PDF

Tài liệu tham khảo

  1. Yunis AA. Chloramphenicol: Relation of structure to activity and toxicity. Annu Rev Pharmacol Toxicol. 1988;28:83-100.
  2. Lloyd AVC, Grimes G, Khaw KT, Shwachman H. Chloramphenicol for Long-Term Therapy of Cystic Fibrosis. JAMA J Am Med Assoc. 1963;184(13):1001-6.
  3. Rose PW, Harnden A, Brueggemann AB, Perera R, Sheikh A, Crook D, et al. Chloramphenicol treatment for acute infective conjunctivitis in children in primary care: A randomised double-blind placebo-controlled trial. Lancet. 2005;366(9479):37-43.
  4. Butler T, Arnold K, Linh NN, Pollack M. Chloramphenicol-Resistant Typhoid Fever in Vietnam Associated With R Factor. Lancet. 1973;302(7836):983-5.
  5. McCrumb FR, Mercier S, Robic J, Bouillat M, Smadel JE, Woodward TE, et al. Chloramphenicol and terramycin in the treatment of pneumonic plague. Am J Med. 1953;14(3):284-93.
  6. Sando I, Orita Y, Hirsch BE. Pathology and pathophysiology of Meniere’s disease. Otolaryngol Clin North Am. 2002;35(3):517-28.
  7. Suarez CR, Ow EP. Pediatric Cardiology Chloramphenicoi Toxicity Associated with Severe Cardiac Dysfunction. Pediatr Cardiol. 1992;13:48-51.
  8. Karthik R, Govindasamy M, Chen SM, Mani V, Lou BS, Devasenathipathy R, et al. Green synthesized gold nanoparticles decorated graphene oxide for sensitive determination of chloramphenicol in milk, powdered milk, honey and eye drops. J Colloid Interface Sci. 2016;475:46-56.
  9. Cerkvenik-Flajs V. Performance characteristics of an analytical procedure for determining chloramphenicol residues in muscle tissue by gas chromatography–electron capture detection. Biomed Chromatogr. 2006;20(10):985-92.
  10. Han J, Wang Y, Yu CL, Yan YS, Xie XQ. Extraction and determination of chloramphenicol in feed water, milk, and honey samples using an ionic liquid/sodium citrate aqueous two-phase system coupled with high-performance liquid chromatography. Anal Bioanal Chem. 2011;399(3):1295-304.
  11. Jin W, Ye X, Yu D, Dong Q. Measurement of chloramphenicol by capillary zone electrophoresis following end-column amperometric detection at a carbon fiber micro-disk array electrode. J Chromatogr B Biomed Sci Appl. 2000;741(2):155-62.
  12. Impens S, Reybroeck W, Vercammen J, Courtheyn D, Ooghe S, De Wasch K, et al. Screening and confirmation of chloramphenicol in shrimp tissue using ELISA in combination with GC-MS2 and LC-MS2. Anal Chim Acta. 2003;483(1-2):153-63.
  13. Shan M, Yu S, Yan H, Guo S, Xiao W, Wang Z, et al. A review on the phytochemistry, pharmacology, pharmacokinetics and toxicology of geniposide, a natural product. Molecules. 2017;22(10):1-29.
  14. Yuan J, Addo J, Aguilar MI, Wu Y. Surface plasmon resonance assay for chloramphenicol without surface regeneration. Anal Biochem. 2009;390(1):97-9.
  15. Borowiec J, Wang R, Zhu L, Zhang J. Synthesis of nitrogen-doped graphene nanosheets decorated with gold nanoparticles as an improved sensor for electrochemical determination of chloramphenicol. Electrochim Acta. 2013;99:138-44.
  16. Zhang N, Xiao F, Bai J, Lai Y, Hou J, Xian Y, et al. Label-free immunoassay for chloramphenicol based on hollow gold nanospheres/chitosan composite. Talanta. 2011;87(1):100-5.
  17. Zhang H, Yang Z, Ju Y, Chu X, Ding Y, Huang X, et al. Galvanic Displacement Synthesis of Monodisperse Janus- and Satellite-Like Plasmonic–Magnetic Ag–Fe@Fe3O4 Heterostructures with Reduced Cytotoxicity. Adv Sci. 2018;5(8):1-9.
  18. Zhang C, Wang C, Xiao R, Tang L, Huang J, Wu D, et al. Sensitive and specific detection of clinical bacteria: Via vancomycin-modified Fe3O4@Au nanoparticles and aptamer-functionalized SERS tags. J Mater Chem B. 2018;6(22):3751-61.
  19. Yari A, Derki S. New MWCNT-Fe3O4@PDA-Ag nanocomposite as a novel sensing element of an electrochemical sensor for determination of guanine and adenine contents of DNA. Sensors Actuators, B Chem. 2016;227:456-66.
  20. Codognoto L, Winter E, Doretto KM, Monteiro GB, Rath S. Electroanalytical performance of self-assembled monolayer gold electrode for chloramphenicol determination. Microchim Acta. 2010;169(3):345-51.
  21. Wang B, Chen JS, Wu H Bin, Wang Z, Lou XW. Quasiemulsion-templated formation of α-Fe2O3 hollow spheres with enhanced lithium storage properties. J Am Chem Soc. 2011;133(43):17146-8.
  22. Zhang H, Zhao J, Ou X. Facile synthesis of Fe3O4 nanowires at low temperature (80 °C) without autoclaves and their electromagnetic performance. Mater Lett. 2017;209:48-51.
  23. Mahmoudi-Badiki T, Alipour E, Hamishehkar H, Golabi SM. A performance evaluation of Fe3O4/Au and γ-Fe2O3/Au core/shell magnetic nanoparticles in an electrochemical DNA bioassay. J Electroanal Chem. 2017;788:210-6.
  24. Wang G, Li F, Li L, Zhao J, Ruan X, Ding W, et al. In Situ Synthesis of Ag-Fe3O4 Nanoparticles Immobilized on Pure Cellulose Microspheres as Recyclable and Biodegradable Catalysts. ACS Omega. 2020;5(15):8839-46.
  25. Feng M, Long D, Fang Y. Parallel incident spectroelectrochemistry study of chloramphenicol. Anal Chim Acta. 1998;363(1):67-73.
  26. Maier SA. Plasmonics : Fundamentals and Applications. New York: Springer; 2004.
  27. Soleymani J, Hasanzadeh M, Shadjou N, Khoubnasab Jafari M, Gharamaleki JV, Yadollahi M, et al. A new kinetic-mechanistic approach to elucidate electrooxidation of doxorubicin hydrochloride in unprocessed human fluids using magnetic graphene based nanocomposite modified glassy carbon electrode. Mater Sci Eng C. 2016;61:638-50.
  28. Zhang X, Zhang YC, Zhang JW. A highly selective electrochemical sensor for chloramphenicol based on three-dimensional reduced graphene oxide architectures. Talanta. 2016;161:567-73.
  29. Yuan Y, Xu X, Xia J, Zhang F, Wang Z, Liu Q. A hybrid material composed of reduced graphene oxide and porous carbon prepared by carbonization of a zeolitic imidazolate framework (type ZIF-8) for voltammetric determination of chloramphenicol. Microchim Acta. 2019;186(3):2-9.
  30. Munawar A, Tahir MA, Shaheen A, Lieberzeit PA, Khan WS, Bajwa SZ. Investigating nanohybrid material based on 3D CNTs@Cu nanoparticle composite and imprinted polymer for highly selective detection of chloramphenicol. J Hazard Mater. 2018;342:96-106.
Creative Commons License

công trình này được cấp phép theo Creative Commons Ghi công-Chia sẻ tương tự 4.0 License International .

Bản quyền (c) 2023 Array