Cloning an RBD-T4-LINKER-C5a sequence encoding the SARS-CoV-2 antigen into a plant expression vector
PDF

Keywords

SARS-CoV-2 antigen
RBD
C5A
T4
Cloning

How to Cite

1.
Tue NH, Luong NN, Tien NQD. Cloning an RBD-T4-LINKER-C5a sequence encoding the SARS-CoV-2 antigen into a plant expression vector. hueuni-jns [Internet]. 2023Dec.30 [cited 2024Apr.28];132(1D):73-8. Available from: https://jos.hueuni.edu.vn/index.php/hujos-ns/article/view/7075

Abstract

This study aims to make a plant expression vector with an RBD-T4-Linker-C5a sequence that codes for the SARS-CoV-2 antigen and an A3Dsp signal peptide from the rice 3D amylase gene located before the RBD. Methods of molecular cloning were applied in this study. The plant expression vector pNHL22 harboring the RBD-T4-Linker-C5a sequence was successfully established and conjugated into Agrobacterium tumefaciens LBA4404 by triparental mating. Bacteria A. tumefaciens containing the RBD-T4-Linker-C5a sequence are now ready for genetic transformation into the Nicotiana benthamiana plant for future applications.

https://doi.org/10.26459/hueunijns.v132i1D.7075
PDF

References

  1. Chan JFW, Yuan S, Kok KH, To KKW, Chu H, Yang J, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. The Lancet. 2020;395(10223):514-23.
  2. Figueiredo AMD, Daponte A, Figueiredo DCMMD, Gil-García E, Kalache A. Letalidad de la COVID19: ausencia de patrón epidemiológico. Gac Sanit. 2022;35(4):355-7.
  3. Belete TM. Review on up-to-date status of candidate vaccines for COVID-19 disease. Infect drug Resist 2021;14:151-61.
  4. Han P, Li L, Liu S, Wang Q, Zhang D, Xu Z, et al. Receptor binding and complex structures of human ACE2 to spike RBD from Omicron and Delta SARS-CoV-2. Cell. 2022;185(4):630-40.
  5. Li T, Kan Q, Ge J, Wan Z, Yuan M, Huang Y, et al. A novel linear and broadly neutralizing peptide in the SARS-CoV-2 S2 protein for universal vaccine development. Cell Mol Immunol. 2021;18:2563-5.
  6. Shin YJ, König-Beihammer J, Vavra U, Schwestka J, Kienzl NF, Klausberger M, et al. N-glycosylation of the SARS-CoV-2 receptor binding domain is important for functional expression in plants. Front Plant Sci. 2021;12:1-14.
  7. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271-80.
  8. O’Flaherty R, Bergin A, Flampouri E, Mota LM, Obaidi I, Quigley A, et al. Mammalian cell culture for production of recombinant proteins: A review of the critical steps in their biomanufacturing. Biotechnol Adv. 2020;43:1-17.
  9. Ortega-Berlanga B, Pniewski T. Plant-Based Vaccines in Combat against Coronavirus Diseases. Vaccines. 2022;10:138.
  10. Valdiani A, Hansen OK, Nielsen UB, Johannsen VK, Shariat M, Georgiev MI, et al. Bioreactorbased advances in plant tissue and cell culture: challenges and prospects. Crit Rev Biotechnol. 2019;39(1):20-34.
  11. Kowalczyk T, Merecz-Sadowska A, Picot L, Brčić Karačonj I, Wieczfinska J, Śliwiński T, et al. Genetic Manipulation and Bioreactor Culture of Plants as a Tool for Industry and Its Applications. Molecules. 2022;27(3):795.
  12. Kumar M, Tomar M, Punia S, Dhakane-Lad J, Dhumal S, Changan S, et al. Plant-based proteins and their multifaceted industrial applications. LWT. 2022;154:2-15.
  13. Tien NQD, Hoa PTB, Tue NH, Thanh DV, Thi HA, Luong NN, et al. Transient expression of chi42 genes from Trichoderma asperellum in Nicotiana benthamiana by agroinfiltration. Int J Agric Biol. 2021;26:177-84.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2023 Array