In silico extension on the antidiabetic potential of Euonymus laxiflorus natural compounds onto the inhibitability against protein tyrosine phosphatase 1B
PDF

Keywords

antidiabetics
Euonymus laxiflorus
in silico
protein tyrosine phosphatase 1B kháng tiểu đường
Euonymus laxiflorus
in silico
protein tyrosine phosphatase 1B

How to Cite

1.
Q. Bui T, Nguyen VP, Nguyen TTH, Phan TQ, Nhung NTA. In silico extension on the antidiabetic potential of Euonymus laxiflorus natural compounds onto the inhibitability against protein tyrosine phosphatase 1B. hueuni-jns [Internet]. 2023Dec.30 [cited 2025Jan.15];132(1D):99-114. Available from: https://jos.hueuni.edu.vn/index.php/hujos-ns/article/view/7237

Abstract

Euonymus laxiflorus bioactive compounds 1-β-D-glucopyranosyloxy-3,5-dimethoxy-4-hydroxybenzene (1), Walterolactone A/B β-D-pyranoglucoside (2), Gallocatechin (3), Leonuriside A (4), Methyl galloate (5), and Catechin (6) were experimentally evidenced for their multi-inhibition against α-glucosidase and α-amylase. In this work, they were subjected to a combination of computational platforms on tyrosine phosphatase 1B (UniProtKB-PTP1B). As the results, the overall potentiality for bio-inhibitory applications is primarily evaluated by the order: 1 (DSaverage -12.2 kcal.mol-1; polarisability 45.5 Å; no toxicity; ground-state energy -1222.73 a.u.; dipole moment 0.989 Debye) > 2 (DSaverage -9.7 kcal.mol-1; polarisability 39.4 Å; no toxicity; ground-state energy -1070.08 a.u.; dipole moment 6.726 Debye) > 4 (DSaverage -9.1 kcal.mol-1; polarisability 45.1 Å; no toxicity; ground-state energy -1222.73 a.u.; dipole moment 4.895 Debye). Altogether, the retrievals encourage further attempts to test the inhibitory effects of 2 against tyrosine phosphatase 1B and improve the dipole moment of 1 to enhance its biological applicability.

https://doi.org/10.26459/hueunijns.v132i1D.7237
PDF

References

  1. Abraira C, Colwell JA, Nuttall FQ, Sawin CT, Nagel NJ, Comstock JP, et al. Veterans Affairs Cooperative Study on glycemic control and complications in type II diabetes (VA CSDM): results of the feasibility trial. Diabetes Care. Am Diabetes Assoc. 1995;18:1113-23.
  2. Ohkubo Y, Kishikawa H, Araki E, Miyata T, Isami S, Motoyoshi S, et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract. Elsevier. 1995;28:103-17.
  3. Klein R, Klein BEK, Moss SE, Cruickshanks KJ. Relationship of hyperglycemia to the long-term incidence and progression of diabetic retinopathy. Arch Intern Med. American Medical Association. 1994;154:2169-78.
  4. Wu Y, Ding Y, Tanaka Y, Zhang W. Risk Factors Contributing to Type 2 Diabetes and Recent Advances in the Treatment and Prevention. International Journal of Medical Sciences. 2014;11(11):1185-200.
  5. Sandholm N, Forsblom C. Genetics of Diabetic Microvascular Disease. Microvascular Disease in Diabetes; 2020. p. 23-44.
  6. Henning RJ. Type-2 diabetes mellitus and cardiovascular disease. Future Cardiol. Future Medicine; 2018;14:491-509.
  7. Draznin B, Aroda VR, Bakris G, Benson G, Brown FM, Freeman R, et al. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2022. Diabetes Care. 2022;45:S17-38.
  8. Holman RR, Cull CA, Turner RC. A randomized double-blind trial of acarbose in type 2 diabetes shows improved glycemic control over 3 years (U.K. Prospective Diabetes Study 44). Diabetes Care. 1999;22(6):960-4.
  9. Lebovitz HE. Alpha-glucosidase inhibitors. Endocrinology and Metabolism Clinics of North America. 1997;26(3):539-51.
  10. Vieira MNN, Lyra e Silva NM, Ferreira ST, De Felice FG. Protein tyrosine phosphatase 1B (PTP1B): a potential target for Alzheimer’s therapy?. Front Aging Neurosci. 2017;9.
  11. Özil M, Emirik M, Etlik SY, Ülker S, Kahveci B. A simple and efficient synthesis of novel inhibitors of alpha-glucosidase based on benzimidazole skeleton and molecular docking studies. Bioorganic Chemistry. 2016;68:226-35.
  12. Nikookar H, Mohammadi-Khanaposhtani M, Imanparast S, Faramarzi MA, Ranjbar PR, Mahdavi M, et al. Design, synthesis and in vitro α-glucosidase inhibition of novel dihydropyrano [3, 2-c] quinoline derivatives as potential anti-diabetic agents. Bioorganic Chemistry. 2018;77:280-6.
  13. Cho H. Protein tyrosine phosphatase 1B (PTP1B) and obesity. Vitam Horm. 2013;91:405-24.
  14. Nguyen Q-V, Nguyen N-H, Wang S-L, Nguyen VB, Nguyen AD. Free radical scavenging and antidiabetic activities of Euonymus laxiflorus Champ. extract. Res Chem Intermed. 2017;43:5615-24.
  15. Nguyen VB, Wang S-L, Nguyen AD, Lin Z-H, Doan CT, Tran TN, et al. Bioactivity-guided purification of novel herbal antioxidant and anti-NO compounds from Euonymus laxiflorus Champ. Molecules. 2018;24:120.
  16. Kuo Y-H, Huang H-C, Chiou W-F, Shi L-S, Wu T-S, Wu Y-C. A Novel NO-Production-Inhibiting Triterpene and Cytotoxicity of Known Alkaloids from Euonymus l axiflorus. J Nat Prod. 2003;66:554-7.
  17. Nguyen VB, Nguyen QV, Nguyen AD, Wang S-L. Screening and evaluation of α-glucosidase inhibitors from indigenous medicinal plants in Dak Lak Province, Vietnam. Res Chem Intermed. 2017;43:3599-612.
  18. Nguyen VB, Wang S-L, Nguyen TH, Nguyen MT, Doan CT, Tran TN, et al. Novel potent hypoglycemic compounds from Euonymus laxiflorus Champ. and their effect on reducing plasma glucose in an ICR mouse model. Molecules. 2018;23:1928.
  19. Nguyen VB, Wang S-L, Nguyen AD, Vo TPK, Zhang L-J, Nguyen QV, et al. Isolation and identification of novel α-amylase inhibitors from Euonymus laxiflorus Champ. Res Chem Intermed. 2018;44:1411-24.
  20. Thao TTP, Bui TQ, Quy PT, Bao NC, Van Loc T, Van Chien T, et al. Isolation, semi-synthesis, docking-based prediction, and bioassay-based activity of Dolichandrone spathacea iridoids: new catalpol derivatives as glucosidase inhibitors. RSC Adv. 2021;11:11959-75.
  21. Thao TTP, Bui TQ, Hai NTT, Huynh LK, Quy PT, Bao NC, et al. Newly synthesised oxime and lactone derivatives from Dipterocarpus alatus dipterocarpol as anti-diabetic inhibitors: experimental bioassay-based evidence and theoretical computation-based prediction. RSC Adv. 2021;11:35765-82.
  22. Molecular Operating Environment (MOE), 2015.02 Chemical Computing Group ULC. Montreal: Chemical Computing Group ULC; 2015.
  23. 2Gasteiger J, Marsili M. Iterative partial equalization of orbital electronegativity-a rapid access to atomic charges. Tetrahedron. 1980;36:3219-28.
  24. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23:3-25.
  25. Ahsan MJ, Samy JG, Khalilullah H, Nomani MS, Saraswat P, Gaur R, et al. Molecular properties prediction and synthesis of novel 1,3,4-oxadiazole analogues as potent antimicrobial and antitubercular agents. Bioorganic Med Chem Lett. 2011;21:7246-50.
  26. Mazumdera J, Chakraborty R, Sena S, Vadrab S, Dec B, Ravi TK. Synthesis and biological evaluation of some novel quinoxalinyl triazole derivatives. Der Pharma Chem. 2009;1:188-98.
  27. Pires DEV, Blundell TL, Ascher DB. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem. 2015;58:4066-72.
  28. Gaussian 09, Revision A.02. Wallingford: Gaussian Inc; 2016
  29. Markovi ZS, Dimitri JM. Mechanistic study of the structure – activity relationship for the free radical scavenging activity of baicalein. J Mol Model. 2011;17:2575-84.
  30. Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys Chem Chem Phys. 2005;7:3297-305.
  31. Reed AE, Weinstock RB, Weinhold F. Natural population analysis. J Chem Phys. 1985;83:735-46.
  32. Feynman R. The Feynman lectures on physics - Volume II. Millenium. Gottlieb MA, editor. New York: Basic Books; 2010.
  33. Rosenberg B. Electrical Conductivity of Proteins. Nature. 1962;193:364-5.
  34. 3Kharkyanen VN, Petrov EG, Ukrainskii II. Donor-Acceptor model of electron transfer through proteins. J Theor Biol. 1978;73:29-50.
  35. Suresh BV. Solid State Devices and Technology. Bangalore: Pearson Education India; 2010.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2023 Array