Abstract
Let $s, b, d$ be positive integers with $(s+bd)-(n+1)(s+bn)>0$. Let $R_{i}$ be homogeneous polynomials of degree $s$ and $Q_i$ be homogeneous polynomials of degree $b$. For an algebraically non-degenerate holomorphic curve $f\colon\mathbb{C}\rightarrow\mathbb{C} \mathbb{P}^n$, for a Fermat-type hypersurface of the form $\sum_{i=0}^{n} Q_i R_{i}^{d}=0$, we obtain a Second Main Theorem type estimate in which the counting function are truncated to level $n$.
References
- Nevanlinna R. Zur Theorie der Meromorphen Funktionen. Acta Math. 1925;46(1-2):1–99.
- Cartan H. Sur les zéros des combinaisons linéaires de p fonctions holomorphes donnés. Mathematica. 1933;7:5–31.
- Ru M. A defect relation for holomorphic curves intersecting hypersurfaces. American Journal of Mathematics. 2004; 126(1):215–226.
- Huynh DT, Vu DV, Xie SY. Entire holomorphic curves into projective spaces intersecting a generic hypersurface of high degree. In Annales de l’Institut Fourier. 2019;69:653–671.
- Yang L, Shi L, Pang X. Remarks to Cartan’s Second Main Theorem for holomorphic curves into CPn. Proceedings of the American Mathematical Society. 2017;145(8):3437–3445.
- Van TN. A note on Cartan’s second main theorem for holomorphic curve intersecting hypersurface. Journal of Mathematical Analysis and Applications. 2017;452(1):488–494.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2025 Array