Population genetic diversity of giant mottled eels (Anguilla marmorata) in Quang Tri
PDF (Vietnamese)

Keywords

mitochondrial control region
giant mottled eels vùng gene điều khiển
chình hoa

How to Cite

1.
Nguyễn AT, Võ Đức N, Trần TTH, Đào TH, Đặng TL. Population genetic diversity of giant mottled eels (Anguilla marmorata) in Quang Tri. hueuni-jns [Internet]. 2022Sep.30 [cited 2025Jan.7];131(1C):115-23. Available from: https://jos.hueuni.edu.vn/index.php/hujos-ns/article/view/6615

Abstract

This study was conducted to evaluate the population genetic diversity of the wild Anguilla marmorata in Quang Tri province by comparing the DNA sequences of the mitochondrial control region (CR) gene with those of other giant mottled eel populations in the world. The results indicate that the genetic distance between individuals in the Quang Tri population ranged from 0 to 0.261, with an average of 0.024. Among 31 individuals, there were 203 distinct polymorphism sites (S), which led to 209 mutation sites (Eta) and 31 different haplotypes. The average number of distinct nucleotides (k) was 29,299. The nucleotide diversity factor (Pi) accounted for 26.09 × 10–3, and the minimum number of recombination processes (Rm) in the population was 51 events. The majority of eel samples collected at the site had close genetic relationships with those of the North Pacific population (27/31 individuals), and four eel samples had close genetic relationships with those of the South Pacific population. The finding of the four giant mottled eels in Quang Tri belonging to the South Pacific population is considered a significant result of this study.

https://doi.org/10.26459/hueunijns.v131i1C.6615
PDF (Vietnamese)

References

  1. Ege V. A revision of the genus Auguilla SHAW, a systematic, phylogenetic and geographical study. Dana Report. 1939;16:1-256.
  2. Watanabe S. Taxonomy of the Freshwater Eels, Genus Anguilla Schrank, 1798. In: Aida K, Tsukamoto K, Yamauchi K, editors. Eel Biology. Tokyo: Springer Japan; 2003. p. 3-18.
  3. IUCN. The IUCN red list of threatened species. Version 2014.3 [Internet]; 2014 [cited17 Nov 2015]. Available from: http://www.iucnredlist.org/
  4. Jacoby DM, Casselman JM, Crook V, DeLucia MB, Ahn H, Kaifu K, et al. Synergistic patterns of threat and the challenges facing global anguillid eel conservation. Global Ecology Conservation. 2015;4:321-333.
  5. Crook V. Slipping away: International Anguilla eel trade and the role of the Philippines. Cambridge: TRAFFIC International and ZSL; 2014. p. 24-30.
  6. Jansen HM, Winter HV, Bruijs MC, Polman HJ. Just go with the flow? Route selection and mortality during downstream migration of silver eels in relation to river discharge. ICES Journal of Marine Science. 2007;64:1437-1443.
  7. Pacariz S, Westerberg H, Björk G. Climate change and passive transport of European eel larvae. Ecology Freshwater Fish. 2013;23:86-94.
  8. Fazio G, Sasal P, Mouahid G, Lecomte-Finiger R, Moné H. Swim bladder nematodes (Anguillicoloides crassus) disturb silvering in European eels (Anguilla anguilla). Journal of Parasitology. 2012;98:695-705.
  9. Wahlberg M, Westerberg H, Aarestrup K, Feunteun E, Gargan P, Righton D. Evidence of marine mammal predation of the European eel (Anguilla anguilla L.) on its marine migration. Deep Sea Research Part I: Oceanographic Research Papers 2014;86:32-38.
  10. Robinet TT, Feunteun EE. Sublethal effects of exposure to chemical compounds: a cause for the decline in Atlantic eels?. Ecotoxicology. 2002;11:265-277.
  11. Faulks LK, Kerezsy A, Unmack PJ, Johnson JB, Hughes JM. Going, going, gone? Loss of genetic diversity in two critically endangered Australian freshwater fishes, Scaturiginichthys vermeilipinnis and Chlamydogobius squamigenus, from Great Artesian Basin springs at Edgbaston, Queensland, Australia. Aquatic Conservation: Marine and Freshwater Ecosystems. 2017;27(1):39-50.
  12. Nguyen AT, Tsukamoto K, Lokman PM. Composition and distribution of freshwater eels Anguilla spp. in Vietnam. Fisheries Science. 2018;84(6):987-94.
  13. Petit RJ, El Mousadik A, Pons O. Identifying populations for conservation on the basis of genetic markers. Conservation biology. 1998;12(4):844-855.
  14. Borrell YJ, Piñera JA, Sánchez Prado JA, Blanco G. Mitochondrial DNA and microsatellite genetic differentiation in the European anchovy Engraulis encrasicolus L. ICES Journal of Marine Science. 2012;69(8):1357-1371.
  15. Semeraro F, Cancarini A, dell’Omo R, Rezzola S, Romano RM, Costagliola C. Diabetic retinopathy: vascular and inflammatory disease. Journal of Diabetes Research 2015;58:20-60.
  16. Adamkewicz S, Harasewych M. Systematics and biogeography of the genus Donax (Bivalvia: Donacidae) in eastern North America. American Malacological Bulletin. 1996;13(1):97-103.
  17. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X Windows Interface: Flexible Strategies for Multiple Sequence Alignment Aided by Quality Analysis Tools. Nucleic Acids Research. 1997;25(24):4876-82.
  18. Hall TA. BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symposium Series. 1999;41:95-98.
  19. Nei M, Kumar S. Molecular Evolution and Phylogenetics. New York: Oxford University Press; 2000.
  20. Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, et al. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Molecular Biology and Evolution. 2017;34(12):3299-302.
  21. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution. 2018;35(6):1547-1549.
  22. Minegishi Y, Aoyama J, Tsukamoto K. Multiple population structure of the giant mottled eel, Anguilla marmorata. Molecular Ecology. 2008;17: 3109-3122.
  23. Moritz C, Dowling TE, Brown WM. Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annual Review of Ecology and Systematics. 1987;18:269-292.
  24. Stoneking M, Hedgecock D, Higuchi RG, Vigilant L, Erlich HA. Population variation of human mtDNA control region sequences detected by enzymatic amplification and sequencespecific oligonucleotide probes. American Journal of Human Genetics. 1991; 48:370-382.
  25. Avise JC. Molecular Markers, Natural History, and Evolution, 2nd edn. Massachusetts: Sinauer & Associates, Sunderland; 2004.
  26. Ishikawa S, Tsukamoto K, Nishida M. Genetic evidence for multiple geographic populations of the giant mottled eel Anguilla marmorata in the Pacific and Indian oceans. Ichthyological Research. 2004; 51(4):343-53
  27. Han Y-S, Yambot AV, Zhang H, Hung C-L. Sympatric Spawning but Allopatric Distribution of Anguilla japonica and Anguilla marmorata: Temperature- and Oceanic Current-Dependent Sieving. PLOS ONE. 2012;7(6):e37484
  28. Tesch FW. The eel: biology and management of anguillid eels, 5th edn. Oxford: Wiley-Blackwell; 2003.
  29. Aoyama J. Life history and evolution of migration in catadromous eels (genus Anguilla). Aqua-BioScience Monographs. 2009;2:1-42.
  30. Kuroki M, Aoyama J, Miller M, Yoshinaga T, Shinoda A, Hagihara S, et al. Sympatric spawning of Anguilla marmorata and Anguilla japonica in the western North Pacifc Ocean. Journal of Fish Biology. 2009;74:1853-1865.
  31. Hu J, Kawamura H, Hong H, Qi Y. A review on the currents in the South China Sea: seasonal circulation, South China Sea warm current and Kuroshio intrusion. Journal of Oceanography. 2000;56:607-624.
  32. Kuroki M, Miller MJ, Feunteun E, Sasal P, Pikering T, Han Y-S, et al. Corrigendum to “Distribution of anguillid leptocephali and possible spawning areas in the South Pacific Ocean” [Progr. Oceanogr. 180 (2020) 102234]. Progress in Oceanography. 2020;183: 102310.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2022 Array