Second main theorem for Holomorphic curves intersecting a Fermat-type hypersurface in projective spacel
PDF

Keywords

Nevanlinna theory,
Holomorphic curves
Second Main Theorem
Fermat type hypersurfaces

How to Cite

1.
Nguyen TXM, Pham TL, Nguyen DK, Tran NM. Second main theorem for Holomorphic curves intersecting a Fermat-type hypersurface in projective spacel. hueuni-jns [Internet]. 2025Jun.16 [cited 2025Jun.17];134(1B):13-8. Available from: https://jos.hueuni.edu.vn/index.php/hujos-ns/article/view/7551

Abstract

Let $s, b, d$ be positive integers with $(s+bd)-(n+1)(s+bn)>0$. Let $R_{i}$ be homogeneous polynomials of degree $s$ and $Q_i$ be homogeneous polynomials of degree $b$. For an algebraically non-degenerate holomorphic curve $f\colon\mathbb{C}\rightarrow\mathbb{C} \mathbb{P}^n$, for a Fermat-type hypersurface of the form $\sum_{i=0}^{n} Q_i R_{i}^{d}=0$, we obtain a Second Main Theorem type estimate in which the counting function are truncated to level $n$.

https://doi.org/10.26459/hueunijns.v134i1B.7551
PDF

References

  1. Nevanlinna R. Zur Theorie der Meromorphen Funktionen. Acta Math. 1925;46(1-2):1–99.
  2. Cartan H. Sur les zéros des combinaisons linéaires de p fonctions holomorphes donnés. Mathematica. 1933;7:5–31.
  3. Ru M. A defect relation for holomorphic curves intersecting hypersurfaces. American Journal of Mathematics. 2004; 126(1):215–226.
  4. Huynh DT, Vu DV, Xie SY. Entire holomorphic curves into projective spaces intersecting a generic hypersurface of high degree. In Annales de l’Institut Fourier. 2019;69:653–671.
  5. Yang L, Shi L, Pang X. Remarks to Cartan’s Second Main Theorem for holomorphic curves into CPn. Proceedings of the American Mathematical Society. 2017;145(8):3437–3445.
  6. Van TN. A note on Cartan’s second main theorem for holomorphic curve intersecting hypersurface. Journal of Mathematical Analysis and Applications. 2017;452(1):488–494.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2025 Array