Hydroxyapatite production from animal bone sources
PDF (Vietnamese)

Keywords

hydroxylapatite
xương bò
xương trâu
xương lợn
xương dê hydroxylapatite
cow bone
buffalo bone
pig bone
goat bone

How to Cite

1.
Nguyễn PN, Hồ VT, Trần TM, Nguyễn NUT, Lê TH, Lê LS, Lê TH. Hydroxyapatite production from animal bone sources. hueuni-jns [Internet]. 2025Jun.17 [cited 2025Oct.10];134(1C):37-43. Available from: https://jos.hueuni.edu.vn/index.php/hujos-ns/article/view/7663

Abstract

In this study, the bone char composition of cows, buffaloes, pigs, and goats was studied. The samples were characterized by using X-ray diffraction, thermal analysis, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The main component is hydroxylapatite (Ca5(OH)(PO4)3) with the following content: 67.7% in buffalo bones, 65.2% in cow bones, 58% in pig bones, and 48% in goat bones. The bone char exhibits a nano-sized morphology ranging from fibres to granules depending on the calcination temperature and animal bone type. The bone char is suitable as a starting material for producing organic nano phosphate fertilizer.

https://doi.org/10.26459/hueunijns.v134i1C.7663
PDF (Vietnamese)

References

  1. Sierra I, Ayastuy JL, Gutiérrez-Ortiz MA, Iriarte-Velasco U. A study on the impact of the reaction mechanism of the thermochemical activation of bone char (by pyrolysis and carbonization). J Anal Appl Pyrolysis. 2023;171:105973.
  2. Huyen DT, Phat LN, Long DH, Nguyen HC, Khoa BDD. Investigation of characteristics and application of food waste-derived bone char on plant growth. J Environ Chem Eng. 2024;12(5):113446.
  3. Tovar-Gómez R, Moreno-Virgen MR, Dena-Aguilar JA, Hernández-Montoya V, Bonilla-Petriciolet A, Montes-Morán MA. Modeling of fixed-bed adsorption of fluoride on bone char using a hybrid neural network approach. Chemical Engineering Journal. 2013;228:1098-109.
  4. Tchomgui-Kamga E, Ngameni E, Darchen A. Evaluation of removal efficiency of fluoride from aqueous solution using new charcoals that contain calcium compounds. J Colloid Interface Sci. 2010;346(2):494-9.
  5. Alkurdi SSA, Al-Juboori RA, Bundschuh J, Hamawand I. Bone char as a green sorbent for removing health threatening fluoride from drinking water. Environ Int. 2019;127:704-19.
  6. Alkurdi SSA, Herath I, Bundschuh J, Al-Juboori RA, Vithanage M, Mohan D. Biochar versus bone char for a sustainable inorganic arsenic mitigation in water: What needs to be done in future research? Environ Int. 2019;127:52-69.
  7. Delgadillo-Velasco L, Hernández-Montoya V, Cervantes FJ, Montes-Morán MA, Lira-Berlanga D. Bone char with antibacterial properties for fluoride removal: Preparation, characterization and water treatment. J Environ Manage. 2017;201:277-85.
  8. Mendes KF, de Sousa RN, Takeshita V, Alonso FG, Régo APJ, Tornisielo VL. Cow bone char as a sorbent to increase sorption and decrease mobility of hexazinone, metribuzin, and quinclorac in soil. Geoderma. 2019;343:40-9.
  9. Glæsner N, Hansen HCB, Hu Y, Bekiaris G, Bruun S. Low crystalline apatite in bone char produced at low temperature ameliorates phosphorus-deficient soils. Chemosphere. 2019;223:723-30.
  10. Yang H, Zhao Z, Cao X, Fan H, Xiao J, Xia Y, et al. Geochemistry of apatite individuals in Zhijin phosphorites, South China: Insight into the REY sources and diagenetic enrichment. Ore Geol Rev. 2022;150:105169.
  11. Chen, Wright J V, Conca JL, Peurrung LM. Effects of pH on Heavy Metal Sorption on Mineral Apatite. Environ Sci Technol. 1997;31(3):624-31.
  12. Đông X. Người Việt tiêu thụ khoảng 32 kg thịt lợn mỗi năm [internet]. Hà Nội: Báo lao động; 2023 August 08 [cited 2025]. Available from: https://laodong.vn/kinh-doanh/nguoi-viet-tieu-thu-khoang-32-kg-thit-lon-moi-nam-1224845.ldo.
  13. Orlovskii VP, Komlev VS, Barinov SM. Orlovskii2002. 2002;38(10):973-84.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2025 Array