TỔNG HỢP TẤM NANO Fe2O3 SỬ DỤNG GLUCOMANNAN LÀM CHẤT ĐỊNH HƯỚNG CẤU TRÚC
PDF

Từ khóa

Glucomannan
tấm nano Fe2O3
polymer sinh học. Fe2O3 nanosheets
biopolymer
template

Cách trích dẫn

1.
Sơn LL, Hiếu LT, Phú NV, Minh TT, Trang LT, Thi TTV. TỔNG HỢP TẤM NANO Fe2O3 SỬ DỤNG GLUCOMANNAN LÀM CHẤT ĐỊNH HƯỚNG CẤU TRÚC. hueuni-jns [Internet]. 10 Tháng Ba 2021 [cited 24 Tháng Mười-Một 2024];130(1A):61-7. Available at: https://jos.hueuni.edu.vn/index.php/hujos-ns/article/view/5910

Tóm tắt

Trong nghiên cứu này, glucomannan – một popymer sinh học – được sử dụng làm chất định hướng cấu trúc trong quá trình tổng hợp các tấm nano Fe2O3 với độ xốp cao. Ảnh hưởng của nồng độ dung dịch Fe(NO3)3 đến hình thái và cấu trúc pha của Fe2O3 đã được nghiên cứu. Vật liệu được đặc trưng bằng kỹ thuật hiển vi điện tử quét, hiển vi điện tử truyền qua, hiển vi điện tử truyền qua phân giải cao, nhiễu xạ tia X, phổ tán xạ năng lượng tia X, phổ hồng ngoại biến đổi Fourier và đẳng nhiệt hấp phụ/khử hấp nitơ. Phương pháp này cho phép chế tạo các tấm nano oxit kim loại có độ xốp cao.

https://doi.org/10.26459/hueunijns.v130i1A.5910
PDF

Tài liệu tham khảo

  1. Wang Q, Sun Y, Yang B, Wang Z, Liu Y, Cao Q, et al. Optimization of polysaccharides extraction from seeds of Pharbitis nil and its anti-oxidant activity. Carbohydrate polymers. 2014;102:460-6.
  2. Waitz T, Wagner T, Kohl C-D, Tiemann M. New mesoporous metal oxides as gas sensors. Studies in surface science and catalysis. 2008;174:401-4.
  3. Solanki PR, Kaushik A, Agrawal VV, Malhotra BDJNAM. Nanostructured metal oxide-based biosensors. 2011;3(1):17-24.
  4. Deng S, Kurttepeli M, Cott DJ, Bals S, Detavernier CJJoMCA. Porous nanostructured metal oxides synthesized through atomic layer deposition on a carbonaceous template followed by calcination. 2015;3(6):2642-9.
  5. Cuong ND, Quang PL, Anh NTN, Quang DT, Nam PC, Trung KQ, et al. Facile post-synthesis and gas sensing properties of highly porous NiO microspheres. Sensors Actuators A: Physical. 2019;296:110-20.
  6. Kim Y-Y, Neudeck C, Walsh D. Biopolymer templating as synthetic route to functional metal oxide nanoparticles and porous sponges. Polymer Chemistry. 2010;1(3):272-5.
  7. Kim S-W, Han TH, Kim J, Gwon H, Moon H-S, Kang S-W, et al. Fabrication and electrochemical characterization of TiO2 three-dimensional nanonetwork based on peptide assembly. Acs Nano. 2009;3(5):1085-90.
  8. Walsh D, Arcelli L, Ikoma T, Tanaka J, Mann S. Dextran templating for the synthesis of metallic and metal oxide sponges. Nature materials. 2003;2(6):386-90.
  9. Xue J, Song F, Yin X-W, Zhang Z-L, Liu Y, Wang X-L, et al. Cellulose nanocrystal-templated synthesis of mesoporous TiO2 with dominantly exposed (001) facets for efficient catalysis. ACS Sustainable Chemistry Engineering. 2017;5(5):3721-5.
  10. Chau TTL, Le DQT, Le HT, Nguyen CD, Nguyen LV, Nguyen T-D. Chitin Liquid-Crystal-Templated Oxide Semiconductor Aerogels. ACS applied materials & interfaces. 2017;9(36):30812-20.
  11. Nguyen T-D, Tang D, D’Acierno F, Michal CA, MacLachlan MJ. Biotemplated lightweight γ-alumina aerogels. Chemistry of Materials. 2018;30(5):1602-9.
  12. Chua M, Chan K, Hocking TJ, Williams PA, Perry CJ, Baldwin TC. Methodologies for the extraction and analysis of konjac glucomannan from corms of Amorphophallus konjac K. Koch. Carbohydrate Polymers. 2012;87(3):2202-10.
  13. El Sayed A, Morsi W. α-Fe2O3/(PVA+ PEG) nanocomposite films; synthesis, optical, and dielectric characterizations. Journal of Materials Science. 2014;49(15):5378-87.
  14. Deng Q, Wang L, Li J. Electrochemical characterization of Co3O4/MCNTs composite anode materials for sodium-ion batteries. Journal of Materials Science. 2015;50(11):4142-8.
  15. Quang PL, Cuong ND, Hoa TT, Long HT, Hung CM, Le DTT, et al. Simple post-synthesis of mesoporous p-type Co3O4 nanochains for enhanced H2S gas sensing performance. Sensors Actuators B: Chemical. 2018;270:158-66.
  16. Thu NTA, Cuong ND, Khieu DQ, Nam PC, Van Toan N, Hung CM, et al. Fe2O3 nanoporous network fabricated from Fe3O4/reduced graphene oxide for high-performance ethanol gas sensor. Sensors Actuators B: Chemical. 2018;255:3275-83.
  17. Son LL, Cuong ND, Van Thi TT, Hieu LT, Trung DD, Van Hieu N. Konjac glucomannan-templated synthesis of three-dimensional NiO nanostructures assembled from porous NiO nanoplates for gas sensors. RSC advances. 2019;9(17):9584-93.
  18. Zhang Y, Zhang N, Wang T, Huang H, Chen Y, Li Z, et al. Heterogeneous degradation of organic contaminants in the photo-Fenton reaction employing pure cubic β-Fe2O3. Applied Catalysis B: Environmental. 2019;245:410-9.
  19. Gan L, Shang S, Hu E, Yuen CWM, Jiang S-x. Konjac glucomannan/graphene oxide hydrogel with enhanced dyes adsorption capability for methyl blue and methyl orange. Applied Surface Science. 2015;357:866-72.
  20. Chen Z-G, Zong M-H, Li G-J. Lipase-catalyzed acylation of konjac glucomannan in organic media. Process Biochemistry. 2006;41(7):1514-20.
  21. Lei J, Zhou L, Tang Y, Luo Y, Duan T, Zhu W. High-strength konjac glucomannan/silver nanowires composite films with antibacterial properties. Materials. 2017;10(5):524.
  22. Wei R, Zhou X, Zhou T, Hu J, Ho JC. Co3O4 nanosheets with in-plane pores and highly active {112} exposed facets for high performance lithium storage. The Journal of Physical Chemistry C. 2017;121(35):19002-9.
  23. Cuong ND, Hoa ND, Hoa TT, Khieu DQ, Quang DT, Van Quang V, et al. Nanoporous hematite nanoparticles: Synthesis and applications for benzylation of benzene and aromatic compounds. Journal of alloys compounds. 2014;582:83-7.
  24. Park C, Jung J, Lee CW, Cho J. Synthesis of mesoporous α-Fe2O3 nanoparticles by non-ionic soft template and their applications to heavy oil upgrading. Scientific reports. 2016;6:39136.
Creative Commons License

công trình này được cấp phép theo Creative Commons Ghi công-Chia sẻ tương tự 4.0 License International .

Bản quyền (c) 2021 Array