KHẢ NĂNG ỨC CHẾ ĂN MÒN CỦA AMOXICILLIN TRÊN THÉP CÁC BON TRONG MÔI TRƯỜNG HCl 1 M
PDF

Từ khóa

corrosion
amoxicillin
mild steel
HCl
computational chemistry ăn mòn
thép
hóa tính toán

Cách trích dẫn

1.
Đinh T, Trần XM, Nguyễn MT, Phạm CN. KHẢ NĂNG ỨC CHẾ ĂN MÒN CỦA AMOXICILLIN TRÊN THÉP CÁC BON TRONG MÔI TRƯỜNG HCl 1 M. hueuni-jns [Internet]. 30 Tháng Chín 2021 [cited 28 Tháng Mười-Một 2024];130(1C):113-26. Available at: https://jos.hueuni.edu.vn/index.php/hujos-ns/article/view/6363

Tóm tắt

Sự ức chế ăn mòn của amoxicillin (AMO) trên thép các bon nhẹ trong môi trường HCl 1 M đã được nghiên cứu bằng phương pháp thực nghiệm và hóa tính toán. Hiệu quả ức chế ăn mòn của AMO lên thép tăng lên khi tăng nồng độ AMO và đạt cực đại (84,72%) ở 25 °C và nồng độ AMO 100 mg·L–1. Một vài thông số hóa lượng tử được tính toán dựa trên cấu hình tối ưu của AMO ở mức ở mức lý thuyết B3LYP/6-31+G(d,p). Mô phỏng động lực học phân tử và mô phỏng Monte Carlo được ứng dụng để tìm cấu hình                               hấp phụ bền nhất của AMO trên bề mặt Fe(110) và làm rõ cơ chế của quá trình ức chế ăn mòn. Kết quả cho thấy AMO là một chất ức chế ăn mòn hiệu quả đối với thép các bon nhẹ trong dung dịch HCl 1 M.

https://doi.org/10.26459/hueunijns.v130i1C.6363
PDF

Tài liệu tham khảo

  1. Marzorati S, Verotta L, Trasatti SP. Green Corrosion Inhibitors from Natural Sources and Biomass Wastes. Molecules. 2018;24(1). DOI: https://doi.org/10.3390/molecules24010048
  2. Ali SA, Saeed M, Rahman S. The isoxazolidines: a new class of corrosion inhibitors of mild steel in acidic medium. Corrosion Science. 2003;45(2):253-66. DOI: https://doi.org/10.1016/S0010-938X(02)00099-9
  3. Bouyanzer A, Hammouti B. A study of anti‐corrosive effects of Artemisia oil on steel. Pigment & resin technology. 2004. DOI: https://doi.org/10.1108/03699420410560489
  4. El-Etre A. Inhibition of aluminum corrosion using Opuntia extract. Corrosion science. 2003;45(11):2485-95. DOI: https://doi.org/10.1016/S0010-938X(03)00066-0
  5. El-Etre A. Khillah extract as inhibitor for acid corrosion of SX 316 steel. Applied Surface Science. 2006;252(24):8521-5. DOI: https://doi.org/10.1016/j.apsusc.2005.11.066
  6. El-Etre A, Abdallah M, El-Tantawy Z. Corrosion inhibition of some metals using lawsonia extract. Corrosion science. 2005;47(2):385-95. DOI: https://doi.org/10.1016/j.corsci.2004.06.006
  7. Gece G. Drugs: A review of promising novel corrosion inhibitors. Corrosion Science. 2011;53(12):3873-98. DOI: https://doi.org/10.1016/j.corsci.2011.08.006
  8. Golestani G, Shahidi M, Ghazanfari D. Electrochemical evaluation of antibacterial drugs as environment-friendly inhibitors for corrosion of carbon steel in HCl solution. Applied surface science. 2014;308:347-62. DOI: https://doi.org/10.1016/j.apsusc.2014.04.172
  9. Alfakeer M, Abdallah M, Fawzy A. Corrosion inhibition effect of expired ampicillin and flucloxacillin drugs for mild steel in aqueous acidic medium. International Journal of Electrochemical Science. 2020;15:3283-97. DOI: https://doi.org/10.20964/2020.04.09
  10. Shukla SK, Quraishi M, Ebenso EE. Adsorption and corrosion inhibition properties of cefadroxil on mild steel in hydrochloric acid. International Journal of Electrochemical Science. 2011;6:2912-31.
  11. Nazeer AA, El-Abbasy H, Fouda A. Antibacterial drugs as environmentally-friendly corrosion inhibitors for carbon steel in acid medium. Research on Chemical Intermediates. 2013;39(3):921-39.
  12. Islam N, Kaya S. Conceptual density functional theory and its application in the chemical domain. London: Apple Academic Press; 2018.
  13. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford CT2009.
  14. Makowski M, Raczyńska ED, Chmurzyński L. Ab Initio Study of Possible and Preferred Basic Site(s) in PolyfunctionalN1,N1-Dimethyl-N2-cyanoformamidine. The Journal of Physical Chemistry A. 2001;105(5):869-74. DOI: https://doi.org/10.1021/jp002458t
  15. Raczynska ED, Darowska M, Dabkowska I, Decouzon M, Gal JF, Maria PC, et al. Experimental and theoretical evidence of basic site preference in polyfunctional superbasic amidinazine: N(1),N(1)-dimethyl-N(2)-beta-(2-pyridylethyl)formamidine. The Journal of organic chemistry. 2004;69(12):4023-30. DOI: https://doi.org/10.1021/jo030308j
  16. Raczyńska E, Makowski M, Górnicka E, Darowska M. Ab Initio Studies on the Preferred Site of Protonation in Cytisine in the Gas Phase and Water. International Journal of Molecular Sciences. 2005;6(1):143-56. DOI: https://doi.org/10.3390/i6010143
  17. Salarvand Z, Amirnasr M, Talebian M, Raeissi K, Meghdadi S. Enhanced corrosion resistance of mild steel in 1M HCl solution by trace amount of 2-phenyl-benzothiazole derivatives: Experimental, quantum chemical calculations and molecular dynamics (MD) simulation studies. Corrosion Science. 2017;114:133-45. DOI: https://doi.org/10.1016/j.corsci.2016.11.002
  18. Ferreira ES, Giacomelli C, Giacomelli FC, Spinelli A. Evaluation of the inhibitor effect of l-ascorbic acid on the corrosion of mild steel. Materials Chemistry and Physics. 2004;83(1):129-34. DOI: https://doi.org/10.1016/j.matchemphys.2003.09.020
  19. Satapathy AK, Gunasekaran G, Sahoo SC, Amit K, Rodrigues PV. Corrosion inhibition by Justicia gendarussa plant extract in hydrochloric acid solution. Corrosion Science. 2009;51(12):2848-56. DOI: https://doi.org/10.1016/j.corsci.2009.08.016
  20. Larabi L, Benali O, Harek Y. Corrosion inhibition of copper in 1 M HNO3 solution by N-phenyl Oxalic Dihydrazide and Oxalic N-phenylhydrazide N-phenylthiosemicarbazide. Portugaliae Electrochimica Acta. 2006;24(3):337-46.
  21. Oguzie EE. Corrosion inhibitive effect and adsorption behaviour of Hibiscus sabdariffa extract on mild steel in acidic media. Portugaliae Electrochimica Acta. 2008;26(3):303-14.
  22. Thu TTK. Giáo trình lý thuyết thống kê. Hà Nội: NXB Đại học Kinh tế Quốc dân; 2012.
  23. Singh A, Singh V, Quraishi M. Aqueous extract of Kalmegh (Andrographis paniculata) leaves as green inhibitor for mild steel in hydrochloric acid solution. International Journal of Corrosion. 2010. DOI: https://doi.org/10.1155/2010/275983
  24. Orubite K, Oforka N. Inhibition of the corrosion of mild steel in hydrochloric acid solutions by the extracts of leaves of Nypa fruticans Wurmb. Materials Letters. 2004;58(11):1768-72. DOI: https://doi.org/10.1016/j.matlet.2003.11.030
  25. Vinod Kumar K, Sankara Narayanan Pillai M, Rexin Thusnavis G. Green corrosion inhibitor from seed extract of Areca catechu for mild steel in hydrochloric acid medium. Journal of materials science. 2011. DOI: https://doi.org/10.1007/s10853-011-5457-0
  26. Haque J, Srivastava V, Chauhan DS, Lgaz H, Quraishi MA. Microwave-induced synthesis of chitosan Schiff bases and their application as novel and green corrosion inhibitors: experimental and theoretical approach. ACS omega. 2018;3(5):5654-68. DOI: https://doi.org/10.1021/acsomega.8b00455
  27. Hsu C, Mansfeld F. Concerning the conversion of the constant phase element parameter Y 0 into a capacitance. Corrosion. 2001;57(9):747. DOI: https://doi.org/10.5006/1.3280607
  28. Saratha R, Priya S, Thilagavathy P. Investigation of Citrus aurantiifolia leaves extract as corrosion inhibitor for mild steel in 1 M HCl. Journal of chemistry. 2009;6(3):785-95. DOI: https://doi.org/10.1155/2009/107807
  29. Tao Z, He W, Wang S, Zhang S, Zhou G. Adsorption Properties and Inhibition of Mild Steel Corrosion in 0.5 MH 2 SO 4 Solution by Some Triazol Compound. Journal of materials engineering and performance. 2013;22(3):774-81.
  30. Ostovari A, Hoseinieh S, Peikari M, Shadizadeh S, Hashemi S. Corrosion inhibition of mild steel in 1 M HCl solution by henna extract: A comparative study of the inhibition by henna and its constituents (Lawsone, Gallic acid, α-d-Glucose and Tannic acid). Corrosion Science. 2009;51(9):1935-49. DOI: https://doi.org/10.1016/j.corsci.2009.05.024
  31. Lebrini M, Robert F, Blandinières P, Roos C. Corrosion inhibition by Isertia coccinea plant extract in hydrochloric acid solution. International Journal of Electrochemical Science. 2011;6(7):2443-60.
  32. Olasunkanmi LO, Obot IB, Kabanda MM, Ebenso EE. Some Quinoxalin-6-yl Derivatives as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid: Experimental and Theoretical Studies. The Journal of Physical Chemistry C. 2015;119(28):16004-19. DOI: https://doi.org/10.1021/acs.jpcc.5b03285
  33. Ramezanzadeh M, Bahlakeh G, Sanaei Z, Ramezanzadeh B. Studying the Urtica dioica leaves extract inhibition effect on the mild steel corrosion in 1 M HCl solution: Complementary experimental, ab initio quantum mechanics, Monte Carlo and molecular dynamics studies. Journal of Molecular Liquids. 2018;272:120-36. DOI: https://doi.org/10.1016/j.molliq.2018.09.059
  34. Obot IB, Umoren SA, Gasem ZM, Suleiman R, Ali BE. Theoretical prediction and electrochemical evaluation of vinylimidazole and allylimidazole as corrosion inhibitors for mild steel in 1 M HCl. Journal of Industrial and Engineering Chemistry. 2015;21:1328-39. DOI: https://doi.org/10.1016/j.jiec.2014.05.049
  35. Gao G, Liang C. Electrochemical and DFT studies of β-amino-alcohols as corrosion inhibitors for brass. Electrochimica Acta. 2007;52(13):4554-9. DOI: https://doi.org/10.1016/j.electacta.2006.12.058
Creative Commons License

công trình này được cấp phép theo Creative Commons Ghi công-Chia sẻ tương tự 4.0 License International .

Bản quyền (c) 2021 Array