HIỆN TƯỢNG TRỄ TRONG BIẾN DẠNG ĐƠN TRỤC CỦA VẬT LIỆU HAI CHIỀU PENTA-GRAPHENE
PDF

Từ khóa

Biến dạng đơn trục (nén/dãn)
động lực học phân tử (MD)
penta-graphene
hiện tượng trễ (hysteresis) trong biến dạng Uniaxial deformation (compression/extension)
molecular dynamic simulations
penta-graphene
hysteresis

Cách trích dẫn

1.
Triết Đặng M, Nguyễn TBT, Trịnh XH. HIỆN TƯỢNG TRỄ TRONG BIẾN DẠNG ĐƠN TRỤC CỦA VẬT LIỆU HAI CHIỀU PENTA-GRAPHENE. hueuni-jns [Internet]. 30 Tháng Chín 2023 [cited 30 Tháng Sáu 2024];132(1C):39-4. Available at: https://jos.hueuni.edu.vn/index.php/hujos-ns/article/view/6708

Tóm tắt

Trong nghiên cứu này, chúng tôi sử dụng phương pháp động lực học phân tử để khảo sát hiện tượng trễ của vật liệu hai chiều penta-graphene dưới tác dụng của biến dạng đơn trục. Kết quả cho thấy rằng tấm penta-graphene với 10086 nguyên tử carbon có độ bền cơ học cao, ứng suất đáp ứng biến dạng lớn, có thể đạt đến ~170 GPa. Với tốc độ dãn lớn (0,1 Å/ps), trong giới hạn đàn hồi, tấm penta-graphene thể hiện quá trình chuyển pha liên tục; các thông số cấu trúc và nhiệt động gần như đồng biến với độ biến dạng. Tuy nhiên, ở tốc độ dãn nhỏ nhất (2 × 10–6 Å/ps), chúng tôi quan sát được sự chuyển pha loại I trong tấm penta-graphene khi độ biến dạng đạt khoảng 7%. Đồ thị ứng suất và số phối vị theo độ biến dạng thể hiện sự gián đoạn đột ngột tại điểm chuyển pha cấu trúc. Đồng thời, khi nén ngược lại tấm penta-graphene từ trạng thái dãn trong giới hạn đàn hồi, chu trình trễ của đồ thị ứng suất và số phối vị thể hiện rõ nét ở tốc độ biến dạng này. Kết quả nghiên cứu này cho một cách nhìn mới về lý thuyết chuyển pha và hiện tượng trễ trong nghiên cứu tính chất đàn hồi của vật liệu hai chiều penta-graphene.

https://doi.org/10.26459/hueunijns.v132i1C.6708
PDF

Tài liệu tham khảo

  1. Schliemann A, Worschech L, Reitzenstein S, Kaiser S, Forchel A. Large threshold hysteresis in a narrow AlGaAs/GaAs channel with embedded quantum dots. Applied Physics Letters. 2002;81(11):2115-7.
  2. Burke AM, Waddington DEJ, Carrad DJ, Lyttleton RW, Tan HH, Reece PJ, et al. Origin of gate hysteresis in $p$-type Si-doped AlGaAs/GaAs heterostructures. Phys Rev B. 2012 Oct;86(16):165309.
  3. Byrum LE, Ariyawansa G, Jayasinghe RC, Dietz N, Perera AGU, Matsik SG, et al. Capacitance hysteresis in GaN/AlGaN heterostructures. Journal of Applied Physics. 2009;105(2):23709.
  4. Gómez-Cortés JF, Nó ML, López-Ferreño I, Hernández-Saz J, Molina SI, Chuvilin A, et al. Size effect and scaling power-law for superelasticity in shape-memory alloys at the nanoscale. Nature Nanotechnology. 2017;12(8):790-6.
  5. Lai A, Du Z, Gan CL, Schuh CA. Shape Memory and Superelastic Ceramics at Small Scales. Science. 2013;341(6153):1505-8.
  6. Denisov D, Dang MT, Struth B, Wegdam G, Schall P. Resolving structural modifications of colloidal glasses by combining x-ray scattering and rheology. Scientific Reports. 2013;3(1):1631.
  7. Denisov D V, Dang MT, Struth B, Zaccone A, Wegdam GH, Schall P. Sharp symmetry-change marks the mechanical failure transition of glasses. Scientific Reports. 2015;5(1):14359.
  8. Dang MT, Zargar R, Bonn D, Zaccone A, Schall P. Nonequilibrium free energy of colloidal glasses under shear. Journal of Physics D: Applied Physics. 2018 Jul;51(32):324002.
  9. Dang MT, Gartner L, Schall P, Lerner E. Measuring the free energy of hard-sphere colloidal glasses. Journal of Physics D: Applied Physics. 2022.
  10. Aliev AE, Oh J, Kozlov ME, Kuznetsov AA, Fang S, Fonseca AF, et al. Giant-Stroke, Superelastic Carbon Nanotube Aerogel Muscles. Science. 2009;323(5921):1575-8.
  11. Qiu L, Huang B, He Z, Wang Y, Tian Z, Liu JZ, et al. Extremely Low Density and Super-Compressible Graphene Cellular Materials. Advanced Materials. 2017;29(36):1701553.
  12. Zhang D, Zhang Y, Li Q, Dong M. Origin of friction hysteresis on monolayer graphene. Friction. 2021.
  13. Dang MT, Denisov D, Struth B, Zaccone A, Schall P, Dang M.T., et al. Reversibility and hysteresis of the sharp yielding transition of a colloidal glass under oscillatory shear. The European Physical Journal E. 2016;39(4):44.
  14. Novoselov KS, Geim AK, Morozov S V., Jiang D, Zhang Y, Dubonos S V., et al. Electric field in atomically thin carbon films. Science. 2004;306(5696):666-9.
  15. Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385-388.
  16. Morozov S V., Novoselov KS, Katsnelson MI, Schedin F, Elias DC, Jaszczak JA, et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Physical Review Letters. 2008;100(1):11-14.
  17. Randviir EP, Brownson DAC, Banks CE. A decade of graphene research: Production, applications and outlook. Materials Today. 2014;17(9):426-432.
  18. Allen MJ, Tung VC, Kaner RB. Honeycomb carbon: A review of graphene. Chemical Reviews. 2010;110(1):132-145.
  19. Huy HA, Ho QD, Tuan TQ, Le OK, Le Hoai Phuong N. Dumbbell configuration of silicon adatom defects on silicene nanoribbons. Scientific Reports. 2021;11(1):14374.
  20. Zhang JL, Zhao S, Han C, Wang Z, Zhong S, Sun S, et al. Epitaxial Growth of Single Layer Blue Phosphorus: A New Phase of Two-Dimensional Phosphorus. Nano Letters. 2016;16(8):4903-8.
  21. Levendorf MP, Kim CJ, Brown L, Huang PY, Havener RW, Muller DA, et al. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature. 2012;488(7413):627-32.
  22. Fraser S. Structure of single-molecular-layer MoS2. Physical Review B. 1991;43(14):53-56.
  23. Zhang S, Zhou J, Wang Q, Chen X, Kawazoe Y, Jena P. Penta-graphene: A new carbon allotrope. Proceedings of the National Academy of Sciences of the United States of America. 2015;112(8):2372-2377.
  24. Santos RM dos, Sousa LE de, Galvão DS, Ribeiro LA. Tuning Penta-Graphene Electronic Properties Through Engineered Line Defects. Scientific Reports. 2020;10(1):1-8.
  25. Quijano-Briones JJ, Fernández-Escamilla HN, Tlahuice-Flores A. Chiral penta-graphene nanotubes: Structure, bonding and electronic properties. Computational and Theoretical Chemistry. 2017;1108:70-5.
  26. Liu H, Qin G, Lin Y, Hu M. Disparate strain dependent thermal conductivity of two-dimensional penta-structures. Nano Letters. 2016;16(6):3831-42.
  27. Nguyễn NTBT, Lê HN, Trương QT, Nguyễn TA, Đặng MT. Quá Trình Chuyển Pha Phi Cân Bằng Của Vật Liệu Hai Chiều Penta-Graphene. Hue University Journal of Science: Natural Science. 2021;130(1C):139-47.
  28. 2Li X, Zhang S, Wang FQ, Guo Y, Liu J, Wang Q. Tuning the electronic and mechanical properties of penta-graphene: Via hydrogenation and fluorination. Physical Chemistry Chemical Physics. 2016;18(21):14191-7.
  29. Rahaman O, Mortazavi B, Dianat A, Cuniberti G, Rabczuk T. Metamorphosis in carbon network: From penta-graphene to biphenylene under uniaxial tension. FlatChem. 2017;1:65-73.
  30. Erhart P, Albe K. Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide. Physical Review B - Condensed Matter and Materials Physics. 2005;71(3):1-14.
  31. Winczewski S, Shaheen MY, Rybicki J. Interatomic potential suitable for the modeling of penta-graphene: Molecular statics/molecular dynamics studies. Carbon. 2018;126:165-75.
  32. Liu N, Becton M, Zhang L, Tang K, Wang X. Mechanical anisotropy of two-dimensional metamaterials: A computational study. Nanoscale Advances. 2019;1(8):2891-900.
  33. Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of Computational Physics. 1995;117(1):1-19.
  34. Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography. 2011;44(6):1272-6.
  35. Le Roux S, Petkov V. ISAACS-interactive structure analysis of amorphous and crystalline systems. Journal of Applied Crystallography. 2010;43(1):181-5.
  36. Guttman L. Ring structure of the crystalline and amorphous forms of silicon dioxide. Journal of Non-Crystalline Solids. 1990;116(2–3):145-7.
  37. Wang Y, Ding J, Fan Z, Tian L, Li M, Lu H, et al. Tension–compression asymmetry in amorphous silicon. Nature Materials. 2021;20(10):1371-7.
  38. Mi TY, Dang MT, Tien NT. Adsorption of gas molecules on penta-graphene nanoribbon and its implication for nanoscale gas sensor. Physics Open. 2020;2:100014.
  39. Nguyen VD, Dang MT, Weber B, Hu Z, Schall P. Visualizing the Structural Solid-Liquid Transition at Colloidal Crystal/Fluid Interfaces. Adv Mater. 2011 Jun;23(24):2716-20.
  40. He H, Thorpe MF. Elastic Properties of Glasses. Phys Rev Lett. 1985 May;54(19):2107-10.
  41. Benichou I, Faran E, Shilo D, Givli S. Application of a bi-stable chain model for the analysis of jerky twin boundary motion in NiMnGa. Applied Physics Letters. 2013;102(1):11912.
  42. Wang J, Lu C, Wang Q, Xiao P, Ke F, Bai Y, et al. Influence of microstructures on mechanical behaviours of {SiC} nanowires: a molecular dynamics study. Nanotechnology. 2011;23(2):25703.
  43. Benichou I, Givli S. Structures undergoing discrete phase transformation. Journal of the Mechanics and Physics of Solids. 2013;61(1):94-113.
  44. 44. Gerbig YB, Michaels CA, Bradby JE, Haberl B, Cook RF. In situ spectroscopic study of the plastic deformation of amorphous silicon under nonhydrostatic conditions induced by indentation. Phys Rev B. 2015;92(21):214110.
  45. Demkowicz MJ, Argon AS. High-Density Liquidlike Component Facilitates Plastic Flow in a Model Amorphous Silicon System. Phys Rev Lett. 2004;93(2):25505.
Creative Commons License

công trình này được cấp phép theo Creative Commons Ghi công-Chia sẻ tương tự 4.0 License International .

Bản quyền (c) 2023 Array