Tóm tắt
Trong nghiên cứu này, chúng tôi tiến hành chế tạo dung dịch chấm lượng tử cacbon-carbon dots (CDs) từ phần vỏ của quả Gấc bằng phương pháp thuỷ nhiệt. Nhiệt độ phản ứng là 190 °C và thời gian thủy nhiệt là 6, 8, 10, 12, 14 và 16 giờ. Dung dịch sau thủy nhiệt được đánh giá cấu trúc thông qua phổ nhiễu xạ tia X cũng như các tính chất quang thông qua phép đo phổ hấp thụ, phổ quang phát quang, phổ hồng ngoại và hiệu suất lượng tử. Kết quả cho thấy dung dịch chấm lượng tử cacbon chế tạo từ vỏ quả Gấc hấp thụ mạnh bức xạ ở khoảng bước sóng 276 nm và phát quang ở khoảng bước sóng 430 nm. Phổ hồng ngoại cho thấy trên bề mặt lõi cacbon xuất hiện các nhóm chức hydroxyl và cacbonyl. Khi thay đổi thời gian thuỷ nhiệt, giá trị hiệu suất lượng tử cũng thay đổi và đạt cực đại (5,06%) tại 190 °C trong 14 giờ.
Tài liệu tham khảo
-
1. Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA. Electrophoretic analysis and purification of fluorescent single-walled cacbon nanotube fragments. Journal of the American Chemical Society. 2004; 126:12736-12737.
2. Lim SY, Shen W, Gao Z. Carbon quantum dots and their applications. Chemical Society Reviews. 2015; 44:362-381.
3. Zuo J, Jiang T, Zhao X, Xiong X, Xiao S, Zhu Z. Preparation and application of fluorescent carbon dots. Journal of Nanomaterials. 2015; 2015.
4. Deng J, Lu Q, Mi N, Li H, Liu M, Xu M, Tan L, Xie Q, Zhang Y, Yao S. Electrochemical Synthesis of Carbon Nanodots Directly from Alcohols. Chemistry – A European Journal. 2014; 20(17):4993-4999.
5. Li H, He X, Kang Z, Huang H, Liu Y, Liu J, Lian S, Tsang CHA, Yang X, Lee ST. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angewandte Chemie International Edition. 2010; 49(26):4430-4434.
6. Suda Y, Ono T, Akazawa M, Sakai Y, Tsujino J, Homma N. Preparation of carbon nanoparticles by plasma-assisted pulsed laser deposition method—size and binding energy dependence on ambient gas pressure and plasma condition. Thin Solid Films. 2002; 415:15-20.
7. Sun YP, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PG, Yang H, Kose ME, Chen B, Veca LM, Xie SY. Quantum-sized carbon dots for bright and colorful photoluminescence. Journal of the American Chemical Society. 2006; 128(24):7756-7757.
8. Liu S, Tian J, Wang L, Zhang Y, Qin X, Luo Y, Asiri AM, Al‐Youbi AO, Sun X. Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Advanced Materials. 2012; 24(15):2037-2041.
9. Yang Y, Cui J, Zheng M, Hu C, Tan S, Xiao Y, Yang Q, Liu Y. One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chemical Communications. 2012; 48:380-382.
10. Zhai X, Zhang P, Liu C, Bai T, Li W, Dai L, Liu W. Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chemical Communications. 2012; 48:7955-7957.
11. Jaiswal A, Ghosh SS, Chattopadhyay A. One step synthesis of C-dots by microwave mediated caramelization of poly(ethylene glycol). Chemical Communications. 2012; 48:407-409.
12. Meng W, Bai X, Wang B, Liu Z, Lu S, Yang B. Biomass-derived cacbon dots and their applications. Energy & Environmental Materials. 2019; 2:172-192.
13. Namdari P, Negahdari B, Eatemadi A. Synthesis, properties and biomedical applications of cacbon - based quantum dots: an updated review. Biomedicine & Pharmacotherapy. 2017; 87:209-222.
14. Allen MW. Measurement of Fluorescence Quantum Yields. Thermo Fisher Scientific. 2010.
15. https://resources.perkinelmer.com/lab-solutions/resources/docs/APP_Determination_of_Relative_FluorescenceQuantum_Yields_using_FL6500_ Fluorescence_Spect.pdf.
16. Lakowicz JR. Principles of Fluorescence Spectroscopy. Springer. 1999; 2:52-53.
17. Sahu S, Behera B, Maitib TK, Mohapatra S. Simple one-step synthesis of highly luminescent cacbon dots from orange juice: application as excellent bio-imaging agents. Chemical Communications. 2012; 48: 8835-8837.
18. Liu Y, Zhao Y, Zhang Y. One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper(II) ion detection. Sensors and Actuators B: Chemical. 2014; 196:647-652.
19. Qiu Z, Ruan J, Shu S, Air Insulation Prediction Theory and Applications, Springer. 2019.
20. Ding H, Li XH, Chen XB, Wei JS, Li XB, Xiong HM. Surface states of carbon dots influences on luminescence. Journal ò Applied Physics. 2020; 127:231101-231121.
21. Hsu P, Chen PC, Ou CM, Chang HY, Chang HT. Extremely high inhibition activity of photoluminescent carbon nanodots toward cancer cells. Journal of Materials Chemistry B. 2013; 1(13):1774-1781.
22. Hoan BT, Huan PV, Van HN, Nguyen DH, Tam PD, Nguyen KT, Pham VH. Luminescence of lemon‐derived carbon quantum dot and its potential application in luminescent probe for detection of Mo6+ ions. Wiley Analytical Science. 2018; 33(3):545-551.
23. Hoan BT, Tam PD, Pham VH. Green Synthesis of Highly Luminescent Carbon Quantum Dots from Lemon Juice. Journal of Nanotechnology. 2019; 2019.
24. Zulfajri M, Gedda G, Chang CJ, Chang YP, Huang GG. Cranberry beans derived carbon dots as a potential fuorescence sensor for selective detection of Fe3+ ions in aqueous solution. ACS Omega. 2019; 4( 13):15382–15392.

công trình này được cấp phép theo Creative Commons Ghi công-Chia sẻ tương tự 4.0 License International . p>
Bản quyền (c) 2025 Array