Tóm tắt
Nghiên cứu này sử dụng biochar từ cây Mai dương làm vật liệu lọc cho hệ thống lọc hai giai đoạn kỵ khí – hiếu khí, nhằm đánh giá hiệu quả xử lý chất hữu cơ trong nước thải chăn nuôi lợn sau khi qua bể biogas. Hai hệ thống thí nghiệm A và B được thiết kế giống nhau; mỗi hệ thống bao gồm một cột lọc kỵ khí và một bể lọc hiếu khí. Hệ thống A vận hành với tải lượng hữu cơ (organic loading rate – OLR) từ 71,11 đến 243,75 g COD/m³/ngày và tải lượng thủy lực (hydraulic loading rate – HLR) từ 74,94 đến 112,41 L/m²/ngày. Hệ thống B hoạt động với OLR từ 103,26 đến 493,01 g COD/m³/ngày và HLR từ 37,47 đến 112,41 L/m²/ngày. Kết quả cho thấy cả hai hệ thống đều đạt hiệu suất loại bỏ COD (nhu cầu oxy hóa học) cao, với hiệu suất trung bình của hệ thống B là 87 ± 4%, cao hơn so với hệ thống A (86 ± 3%) mặc dù OLR của hệ thống B cao hơn. Việc cân bằng giữa HLR và OLR, tùy thuộc vào điều kiện thực tế của bể lọc, tải đầu vào và yêu cầu xử lý, là rất quan trọng để tối ưu hóa hiệu quả xử lý và đảm bảo tính kinh tế.
Tài liệu tham khảo
- Zhang N, Liu W, Peng Y, Song X. Anaerobic Membrane Bioreactors for Livestock Wastewater Treatment and Resource Recovery: Opportunities and Challenges. Current Pollution Reports. 2021;7(3):277-85.
- Liu C, Feng C, Duan Y, Wang P, Peng C, Li Z, et al. Ecological risk under the dual threat of heavy metals and antibiotic resistant Escherichia coli in swine-farming wastewater in Shandong Province, China. Environmental Pollution. 2023;319:120998.
- Vaishnav S, Saini T, Chauhan A, Gaur GK, Tiwari R, Dutt T, et al. Livestock and poultry farm wastewater treatment and its valorization for generating value-added products: Recent updates and way forward. Bioresource Technology. 2023;382:129170.
- Chen B, Zhu Y, Wu M, Xiao Y, Huang J, Lin C, et al. Research Advancements in Swine Wastewater Treatment and Resource-Based Safe Utilization Management Technology Model Construction. 2024;16(5):661.
- Wang J, Wang S. Preparation, modification and environmental application of biochar: A review. Journal of Cleaner Production. 2019;227:1002-22.
- LehmannJ, Joseph S. Biochar for Environmental Management: Science, Technology and Implementation (2nd ed.). London: Routledge; 2015.
- Samuel Olugbenga O, Goodness Adeleye P, Blessing Oladipupo S, Timothy Adeleye A, Igenepo John K. Biomass-derived biochar in wastewater treatment- a circular economy approach. Waste Management Bulletin. 2024;1(4):1-14.
- Kaetzl K, Lübken M, Nettmann E, Krimmler S, Wichern M. Slow sand filtration of raw wastewater using biochar as an alternative filtration media. Scientific Reports. 2020;10(1):1229.
- Perez-Mercado LF, Lalander C, Berger C, Dalahmeh SS. Potential of Biochar Filters for Onsite Wastewater Treatment: Effects of Biochar Type, Physical Properties and Operating Conditions. 2018;10(12):1835.
- Gao AL, Wan Y. Iron modified biochar enables recovery and recycling of phosphorus from wastewater through column filters and flow reactors. Chemosphere. 2023;313:137434.
- El Hanandeh A, Albalasmeh AA, Gharaibeh M. Phosphorus Removal from Wastewater in Biofilters with Biochar Augmented Geomedium: Effect of Biochar Particle Size. 2017;45(7):1600123.
- Deepa A, Sonal S, Mishra BK. Application of co-immobilized microbial biochar beads in hybrid biofilter towards effective treatment of chrome tanning wastewater. Journal of Water Process Engineering. 2022;48:102821.
- Imran M, Khan ZUH, Iqbal MM, Iqbal J, Shah NS, Munawar S, et al. Effect of biochar modified with magnetite nanoparticles and HNO3 for efficient removal of Cr(VI) from contaminated water: A batch and column scale study. Environmental Pollution. 2020;261:114231.
- Dalahmeh SS, Assayed A, Stenström Y. Combined Vertical-Horizontal Flow Biochar Filter for Onsite Wastewater Treatment—Removal of Organic Matter, Nitrogen and Pathogens. 2019;9(24):5386.
- Kaetzl K, Lübken M, Uzun G, Gehring T, Nettmann E, Stenchly K, et al. On-farm wastewater treatment using biochar from local agroresidues reduces pathogens from irrigation water for safer food production in developing countries. Science of The Total Environment. 2019;682:601-10.
- Wang S, Zhang H, Wang J, Hou H, Du C, Ma P-C, et al. Application of Biochar for Wastewater Treatment. In: Thapar Kapoor R, Treichel H, Shah MP, editors. Biochar and its Application in Bioremediation. Singapore: Springer Nature Singapore; 2021. p. 67-90.
- Li W, Loyola-Licea C, Crowley DE, Ahmad Z. Performance of a two-phase biotrickling filter packed with biochar chips for treatment of wastewater containing high nitrogen and phosphorus concentrations. Process Safety and Environmental Protection. 2016;102:150-8.
- Lourinho G, Rodrigues LFTG, Brito PSD. Recent advances on anaerobic digestion of swine wastewater. International Journal of Environmental Science and Technology. 2020;17(12):4917-38.
- Zhou L, Liang M, Zhang D, Niu X, Li K, Lin Z, et al. Recent advances in swine wastewater treatment technologies for resource recovery: A comprehensive review. Science of The Total Environment. 2024;924:171557.
- Cheng Q, Xu C, Huang W, Jiang M, Yan J, Fan G, et al. Improving anaerobic digestion of piggery wastewater by alleviating stress of ammonia using biochar derived from rice straw. Environmental Technology & Innovation. 2020;19:100948.
- Giang DTH. A study on swine wastewater treatment after biogas digestion using actinastrum sp. 2019;16(12):929.
- Vo TLH, Hoang TV, Nguyen TTH. Study on the biogas potential from pig farms in Vietnam. Tạp chí Khoa học và Công nghệ Đại học Thái Nguyên. 2024;229(05).
- Anh BTK, Van Thanh N, Phuong NM, Ha NTH, Yen NH, Lap BQ, et al. Selection of Suitable Filter Materials for Horizontal Subsurface Flow Constructed Wetland Treating Swine Wastewater. Water, Air, & Soil Pollution. 2020;231(2):88.
- Giang NTH, An NT, Huong LTT, Yabe M, Thang NT, Hieu VN, et al. Recycling Wastewater in Intensive Swine Farms: Selected Case Studies in Vietnam. Journal of the Faculty of Agriculture, Kyushu University. 2021;66(1):115–21.
- Kato-Noguchi H. Invasive Mechanisms of One of the World’s Worst Alien Plant Species Mimosa pigra and Its Management. 2023;12(10):1960.
- Brunauer S, Emmett PH, Teller E. Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society. 1938;60(2):309-19.
- APHA. Standard methods for examination of water and wastewater. Washington DC: APHA; 2017.
- Leng L, Xiong Q, Yang L, Li H, Zhou Y, Zhang W, et al. An overview on engineering the surface area and porosity of biochar. Science of The Total Environment. 2021;763:144204.
- Wilson J, Boutilier L, Jamieson R, Havard P, Lake C. Effects of Hydraulic Loading Rate and Filter Length on the Performance of Lateral Flow Sand Filters for On-Site Wastewater Treatment. 2011;16(8):639-49.
- Dalahmeh SS. Capacity of biochar filters for wastewater treatment in onsite systems—technical report. SLU report; 2016.
- Rehman A, Ayub N, Naz I, Perveen I, Ahmed S. Effects of Hydraulic Retention Time (HRT) on the Performance of a Pilot-Scale Trickling Filter System Treating Low-Strength Domestic Wastewater. Polish Journal of Environmental Studies. 2019;29(1):249-59.
- Çakir R, Gidirislioglu A, Çebi U. A study on the effects of different hydraulic loading rates (HLR) on pollutant removal efficiency of subsurface horizontal-flow constructed wetlands used for treatment of domestic wastewaters. Journal of Environmental Management. 2015;164:121-8.
- Dalahmeh SS, Pell M, Hylander LD, Lalander C, Vinnerås B, Jönsson H. Effects of changing hydraulic and organic loading rates on pollutant reduction in bark, charcoal and sand filters treating greywater. Journal of Environmental Management. 2014;132:338-45.
- Thao NTP, Nga NTT, Kim HTT, Kien TT, Hieu TT, Thang NV, et al. Combination of biochar filtration and ozonation processes in livestock wastewater treatment and application for soil cultivation. Case Studies in Chemical and Environmental Engineering. 2023;7:100286.

công trình này được cấp phép theo Creative Commons Ghi công-Chia sẻ tương tự 4.0 License International . p>
Bản quyền (c) 2025 Array