Pulse differential voltammetric determination of rhodamine-B with ZIF-67/rGO-modified glassy-carbon electrode
PDF (Vietnamese)


graphen oxit dạng khử
von-ampe xung vi phân reduced graphene oxide
differential pulse voltammetric

How to Cite

Ngọ HT, Hoà LT, Hải HVM. Pulse differential voltammetric determination of rhodamine-B with ZIF-67/rGO-modified glassy-carbon electrode. hueuni-jns [Internet]. 2021Mar.10 [cited 2021Apr.21];130(1A):77-86. Available from: http://jos.hueuni.edu.vn/index.php/HUJOS-NS/article/view/5824


This paper presents the synthesis of zeolite imidazolate framework-67/reduced graphene oxide (ZIF-67/rGO) and the pulse differential voltammetric determination of rhodamine-B (RhB). ZIF-67/rGO composite consists of ZIF-67 nano-particles highly dispersed on rGO and has a large specific surface area (498 m2·g). The ZIF-67/rGO-modified glassy-carbon electrode exhibits good electrochemical behavior toward rhodamine B (RhB) oxidation. This modified electrode provides a broad linear range (0.96–44.07 μg·L) and a low detection limit (1.79 μg·L) for RhB. It is possible to utilize this method to quantify RhB in different food samples with comparable results with high-performance liquid chromatography.

PDF (Vietnamese)


  1. Alesso M, Bondioli G, Talío MC, Luconi MO, Fernández LP. Micelles mediated separation fluorimetric methodology for Rhodamine B determination in condiments, snacks and candies. Food Chemistry. 2012;134(1):513-5177. DOI http://dx.doi.org/10.1016/j.foodchem.2012.02.110
  2. Chen J, Zhu X. Magnetic solid phase extraction using ionic liquid-coated core-shell magnetic nanoparticles followed by high-performance liquid chromatography for determination of Rhodamine B in food samples. Food Chemistry. 2016;200:10-5. DOI: http://dx.doi.org/10.1016/j.foodchem.2016.01.002
  3. Franke C, Westerholm H, Niessner R. Solid-phase extraction (SPE) of the fluorescence tracers Uranine and sulphorhodamine B. Water Research. 1997;31(10): 2633-2637.
  4. Gagliardi L, De Orsi D, Cavazzutti G, Multari G, Tonelli D. HPLC determination of rhodamine B (C.I. 45170) products. Chromatographia. 1996;43(1-2):76-8.
  5. Pourreza N, Rastegarzadeh S, Larki A. Micelle-mediated cloud point extraction and spectrophotometric determination of rhodamine B using Triton X-100. Talanta. 2008;77(2):733-736.
  6. Soylak M, Unsal YE, Yilmaz E, Tuzen M. Determination of rhodamine B in soft drink, waste water and lipstick samples after solid phase extraction. Food and Chemical Toxicology. 2011;49(8):1796-1799. DOI: http://dx.doi.org/10.1016/j.fct.2011.04.030
  7. Sun D, Yang X. Rapid Determination of Toxic Rhodamine B in Food Samples Using Exfoliated Graphene-Modified Electrode. Food Analytical Methods. 2017;10(6):2046–2052. DOI: http://dx.doi.org/10.1007/s12161-016-0773-2
  8. Yi Y, Sun H, Zhu G, Zhang Z, Wu X. Sensitive electrochemical determination of rhodamine B based on cyclodextrin-functionalized nanogold/hollow carbon nanospheres. Analytical Methods. 2015;7(12):4965-4970. DOI: https://doi.org/10.1039/C5AY00654F
  9. Zhang J, Zhang L, Wang W, Chen Z. Sensitive electrochemical determination of rhodamine B based on a silica-pillared zirconium phosphate/nafion composite modified glassy carbon electrode. Journal of AOAC International. 2016;99(3):760-765. DOI: https://doi.org/10.5740/jaoacint.15-0262
  10. Sun J, Gan T, Li Y, Shi Z, Liu Y. Rapid and sensitive strategy for Rhodamine B detection using a novel electrochemical platform based on core-shell structured Cu@carbon sphere nanohybrid. Journal of Electroanalytical Chemistry. 2014;724:87-94. DOI: https://doi.org/10.1016/j.jelechem.2014.03.013
  11. Usov PM, McDonnell-Worth C, Zhou F, MacFarlane DR, D’Alessandro DM. The electrochemical transformation of the zeolitic imidazolate framework ZIF-67 in aqueous electrolytes. Electrochimica Acta. 2015;153:433-438. DOI: http://dx.doi.org/10.1016/j.electacta.2014.11.150
  12. Yang L, Yu L, Sun M, Gao C. Zeolitic imidazole framework-67 as an efficient heterogeneous catalyst for the synthesis of ethyl methyl carbonate. Catalysis Communications. 2014;54:86-90. DOI: http://dx.doi.org/10.1016/j.catcom.2014.05.021
  13. Bagoji AM, Nandibewoor ST. Electrocatalytic redox behavior of graphene films towards acebutolol hydrochloride determination in real samples. New Journal of Chemistry. 2016;40(4):3763–3772. DOI: https://doi.org/10.1039/c5nj03655k
  14. Hummers WS, Offeman RE. Preparation of Graphitic Oxide. Journal of the American Chemical Society. 1958;80(6):1339-1339. DOI: https://doi.org/10.1021/ja01539a017
  15. Qian J, Sun F, Qin L. Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Materials Letters. 2012;82:220-223. DOI: https://doi.org/10.1016/j.matlet.2012.05.077
  16. Soleymani J, Hasanzadeh M, Shadjou N, Khoubnasab Jafari M, Gharamaleki JV, Yadollahi M, et al. A new kinetic-mechanistic approach to elucidate electrooxidation of doxorubicin hydrochloride in unprocessed human fluids using magnetic graphene based nanocomposite modified glassy carbon electrode. Materials Science and Engineering: C. 2016;61:638-50. DOI: http://dx.doi.org/10.1016/j.msec.2016.01.003
  17. Du X, Wang C, Liu J, Zhao X, Zhong J, Li Y, et al. Extensive and selective adsorption of ZIF-67 towards organic dyes: Performance and mechanism. Journal of Colloid and Interface Science. 2017;506:437-441. DOI: http://dx.doi.org/10.1016/j.jcis.2017.07.073
  18. Guo X, Xing T, Lou Y, Chen J. Controlling ZIF-67 crystals formation through various cobalt sources in aqueous solution. Journal of Solid State Chemistry. 2016;235:107-112. DOI: http://dx.doi.org/10.1016/j.jssc.2015.12.021
  19. Hu Y, Song X, Zheng Q, Wang J, Pei J. Zeolitic imidazolate framework-67 for shape stabilization and enhanced thermal stability of paraffin-based phase change materials. RSC Advances. 2019;9(18):9962-9967. DOI: https://doi.org/10.1039/c9ra00874h
  20. Mohan VB, Brown R, Jayaraman K, Bhattacharyya D. Characterisation of reduced graphene oxide: Effects of reduction variables on electrical conductivity. Materials Science and Engineering: B. 2015;193:49-60. DOI: http://dx.doi.org/10.1016/j.mseb.2014.11.002
  21. Bard JA, Falkner JL. Electrochemical methods, fundamentals and applications. 2nd ed. New York (US): Wiley; 2001. 864 p.
  22. Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 1979;101(1):19-28. DOI: https://doi.org/10.1016/s0022-0728(79)80075-3
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2021 Array