Abstract
In this paper, we study cellular-compact, cellular-Lindel\"of, strongly star-Hurewicz, strongly star-Rothberger, strongly star-Menger spaces on hyperspaces with the Pixley-Roy topology. For a space $X$ and $n\in\mathbb N$, we prove that
(1) If $\texttt{PR}[X]$ or $\texttt{PR}_n[X]$ is cellular-compact, then $X$ is cellular-compact. However, there exists a compact space $X$ such that $|X|=\omega$, but $\texttt{PR}_n[X]$ for all $n\in\mathbb N$ and $\texttt{PR}[X]$ are not cellular-compact spaces.
(2) If $\texttt{PR}[X]$ or $\texttt{PR}_n[X]$ is cellular-Lindel\"of, then $X$ is cellular-Lindel\"of.
(3) $X$ is countable if and only if $\texttt{PR}[X]$ is a strongly star-Hurewicz space, if and only if $\texttt{PR}[X]$ is a strongly star-Rothberger space if and only if$\texttt{PR}[X]$ is a strongly star-Menger space.
References
- Trieu HTO, Tuyen LQ, Tuyen OV. Starcompact and related spaces on Pixley-Roy hyperspaces. Novi Sad Journal of Mathematics. 2023;
- Li Z. The quasi-Rothberger property of Pixley-Roy hyperspaces. Filomat. 2023;37(8):2531-2538.
- Li Z. The Hurewicz separability of Pixley–Roy hyperspaces. Topology Appl. 2023;324:108-355.
- Mou L, Li P, Lin S. Regular Gδ-diagonals and hyperspaces. Topology Appl. 2021;301:107-530.
- Kocˇinac LDR, Tuyen LQ, Tuyen OV. Some results on Pixley-Roy hyperspaces. J Math. 2022;2022:1-8.
- Tuyen LQ, Tuyen OV. A remark on Pixley-Roy hyperspaces. Novi Sad J. Math. 2024;54(1):183-188.
- Tuyen LQ, Tuyen OV. The σ-point-finite cn-networks (ck-networks) of Pixley-Roy hyperspaces. Mat Vesnik. 2023;75(2):134-137.
- Xuan WF, Song YK. On cellular-Lindelöf spaces. Iranian Math. Soc. 2018;44:1485-1491.
- Tkachuk VV, Wilson RG. Cellular-compact spaces and their applications. Acta Math Hung. 2019;159:674-688.
- Koˇcinac LDR. On Star Selection Principles Theory. Axiom. 2023
- Pixley C, Roy P. Uncompletable Moore spaces. in: Proc. Auburn Topology Conf. 1969;75-85
- van Douwen E. The Pixley-Roy topology on spaces of subsets. Set-theoretic topology, Academic Press. New York. 1977;111-134.
- Tanaka H. Metrizability of Pixley-Roy hyperspaces. Tsukuba J Math. 1983;7(2):299-315.
- Engelking R. General Topology. Berlin: Heldermann Verlag; 1989.
- Xuan WF, Song YK. A study on cellular-Lindelöf spaces. Topology Appl. 2019;251:1-9.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2025 Array