MỞ RỘNG QUY TẮC SUY DIỄN FUZZY SYLLOGISM TRONG LOGIC ĐA TRỊ NGÔN NGỮ

Từ khóa

Đại số gia tử
đại số gia tử đơn điệu
logic đa trị ngôn ngữ

Tóm tắt

Bài báo này chúng tôi mở rộng quy tắc tam đoạn luận mờ (Fuzzy syllogism) với sự tác động của các gia tử được gọi là quy tắc tam đoạn luận mờ với gia tử (generalized fuzzy syllogism with linguistic modifiers (GFSLM)) trong logic đa trị ngôn ngữ.
https://doi.org/10.26459/hueuni-jtt.v126i2A.4588

Tài liệu tham khảo

  1. Lê Văn Hưng, Trần Đình Khang, Đinh Khắc Dũng, Ánh xạ ngược của gia tử và ứng dụng trong suy luận xấp xỉ, báo cáo khoa học tại “Hội thảo khoa học quốc gia lần thứ III” FAIR 2007.
  2. Nguyễn Cát Hồ, Xây dựng cách tiếp cận đại số đến logic mờ và lập luận xấp xỉ, Kỷ yếu hội nghị “Công nghệ thông tin: Nghiên cứu và triển khai”, Hà Nội 5-6/12/1996, 134-149.
  3. L.A. Zadeh. Fuzzy Sets. Information Control, 8:338--353, 1965.
  4. L. A. Zadeh, The concept of a linguistic variable and its application in approximate reasoning, Information Sciences, 1975. Part I – 8:199-249, Part II-8:301-357, Part III-9:43-80.
  5. L. Zadeh. Syllogistic reasoning in fuzzy logic and its application to reasoning with dispositions. IEEE Trans. on Systems,Man and Cybernetics, SMC-15:754–763, 1985.
  6. L.A. Zadeh. From Computing with Numbers to Computing with Words. From Manipulation of Measurement to Manipulation of Perceptions. In Proceedings of EUROFUSE-SIC'99, pages 1-2, 1999.
  7. Baldin, J. F. 1979a. A new approach to approximate reasoning using a fuzzy logic. Fuzzy sets and Systems. 2:309-325
  8. Baldin, J. F. 1979a. Fuzzy logic and its application to fuzzy reasoning. In Advance in fuzzy set theory and applications, ed. M. M. Gupta, R. K. Ragade and R. R. Yager, Amsterdam: North-Holland. P93-115
  9. Mizumoto,M. & Zimmermann,H.J.: Fuzzy inference methods, Proc. of 9th Triennial Conf. on Operational Research (Hamburg, July 20-24), (1981).
  10. Mizumoto,M. & Zimmermann,H.J.: Comparison of fuzzy reasoning methods, Fuzzy Sets and Systems, 8, 3, 253-283 (1982).
  11. Mingsheng Ying, Bernadette Bouchon-Meunier: Quantifiers, modifiers and qualifiers in fuzzy logic. Journal of Applied Non-Classical Logics 7(3): 335-342 (1997)
  12. Mingsheng Ying, Bernadette BouchonMeunier, Approximate Reasoning with Linguistic Modifiers, International journal of intelligent systems, Vol. 13 (1998) 403-418
  13. Luigi Di Lascio, Antonio Gisolfi, Ulises Cortes Garcia, Linguistic Hedges and the Generalized Modus Ponens, International journal of intelligent systems, Vol. 14 (1999) 981-993
  14. Luigi Di Lascio, Antonio Gisolfi, Vincenzo Loia: A new model for linguistic modifiers. Int. J. Approx. Reasoning 15(1): 25-47 (1996)
  15. Daniel G. Schwartz: A Logic for Qualified Syllogisms. SCSS (2) 2008: 45-50
  16. Claudio Moraga, Enric Trillas: A Computing with Words Path from Fuzzy Logic to Natural Language. IFSA/EUSFLAT Conf. 2009: 687-692
  17. Claudio Moraga, Michio Sugeno, Enric Trillas: Optimization of Fuzzy If-Then Rule Bases by Evolutionary Tuning of the Operations. ISMVL 2009: 221-226
  18. Enric Trillas, Margarita Mas, Miquel Monserrat, Joan Torrens: On the representation of fuzzy rules. Int. J. Approx. Reasoning 48(2): 583-597 (2008)
  19. Herman Akdag, Isis Truck: Uncertainty Operators in a Many-Valued Logic. Encyclopedia of Data Warehousing and Mining 2009: 1997-2003
  20. Herman Akdag, Isis Truck, Amel Borgi, Nedra Mellouli: Linguistic Modifiers in a Symbolic Framework. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 9(Supplement): 49-61 (2001)
  21. Mazen El-Sayed, Daniel Pacholczyk: Linguistic Modifiers and Approximate Reasoning. Applied Informatics 2003: 333-338
  22. Mazen El-Sayed, Daniel Pacholczyk: A Symbolic Approximate Reasoning. RSFDGrC 2003: 368-373
  23. Mazen El-Sayed, Daniel Pacholczyk: Towards a Symbolic Interpretation of Approximate Reasoning. Electr. Notes Theor. Comput. Sci. 82(4): 108-119 (2003)
  24. Saossen BelHadj Kacem, AmelBorgi. KhaledGhedira, Generalized Modus Ponens based on linguistic modifiers in symbolic multi-valued framework, Proceeding of the 38th International Symposium on Multiple Valued Logic, (2008) p150 – 155
  25. Saoussen Bel Hadj Kacem, Amel Borgi, Moncef Tagina: On Some Properties of Generalized Symbolic Modifiers and Their Role in Symbolic Approximate Reasoning. ICIC 2009
  26. Amel Borgi, Saoussen Bel Hadj Kacem, Khaled Ghédira: Approximate Reasoning in a Symbolic Multi-valued Framework. Computer and Information Science 2008: 203-217
  27. Da Ruan, Etienne E. Kerre, Gert De Cooman, Bart Cappelle, F. Vanmassenhove: Influence of the fuzzy implication operator on the method-of-cases inference rule. Int. J. Approx. Reasoning 4(4): 307-318 (1990)
  28. Yang Xu, Etienne E. Kerre, Da Ruan, Zhenming Song: Fuzzy reasoning based on the extension principle. Int. J. Intell. Syst. 16(4): 469-495 (2001)
  29. D. Ruan and E. Kerre. On the extension of the compositional rule of inference. International Journal of Intelligent Systems, 8:807–817, 1993.
  30. D. Ruan, Yun Shi and Etienne Kerre, On the Chaining Syllogism in Fuzzy Logic, Proceeding of 2008 International Conference on Intelligence System and Knowledge Engineering, 2008, p459-464
  31. Zheng Pei, The Algebraic Properties of Linguistic Value "Truth" and Its Reasoning. IFSA (1) 2007: 436-444
  32. Jiajun Lai, Yang Xu: Linguistic truth-valued lattice-valued propositional logic system lP(X) based on linguistic truth-valued lattice implication algebra. Inf. Sci. 180(10): 1990-2002 (2010)
  33. Jun Liu, Luis Martinez Lopez, Yang Xu, Zhirui Lu, Automated Reasoning Algorithm for Linguistic Valued Lukasiewicz Propositional Logic. ISMVL 2007: 29
  34. Li Zou, Jun Ma, Yang Xu: A framework of linguistic truth-valued propositional logic based on lattice implication algebra. GrC 2006: 574-577
  35. Shuwei Chen, Yang Xu, Jun Ma: A Linguistic Truth-Valued Uncertainty Reasoning Model Based on Lattice-Valued Logic. FSKD (1) 2005: 276-284
  36. Mondal, B.; Raha, S. Approximate reasoning in fuzzy resolution, Fuzzy Information Processing Society (NAFIPS), 2012 Annual Meeting of the North American, 2012, Page(s): 1 – 6
  37. C. H. Hsieh, The natural operations of linguistic logic, New Mathematics and Natural 21 Computations, 4(1) (2008) 77-86.
  38. Christian Igel, Karl-Heinz Temme: The chaining syllogism in fuzzy logic. IEEE T. Fuzzy Systems 12(6): 849-853 (2004).
Creative Commons License

công trình này được cấp phép theo Creative Commons Ghi công-Chia sẻ tương tự 4.0 License International .

Bản quyền (c) 2017 Array